IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36328-z.html
   My bibliography  Save this article

Efficacy and clinicogenomic correlates of response to immune checkpoint inhibitors alone or with chemotherapy in non-small cell lung cancer

Author

Listed:
  • Lingzhi Hong

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center)

  • Muhammad Aminu

    (The University of Texas MD Anderson Cancer Center)

  • Shenduo Li

    (Division of Hematology and Oncology, Mayo Clinic)

  • Xuetao Lu

    (The University of Texas MD Anderson Cancer Center)

  • Milena Petranovic

    (Massachusetts General Hospital)

  • Maliazurina B. Saad

    (The University of Texas MD Anderson Cancer Center)

  • Pingjun Chen

    (The University of Texas MD Anderson Cancer Center)

  • Kang Qin

    (The University of Texas MD Anderson Cancer Center)

  • Susan Varghese

    (The University of Texas MD Anderson Cancer Center)

  • Waree Rinsurongkawong

    (The University of Texas MD Anderson Cancer Center)

  • Vadeerat Rinsurongkawong

    (The University of Texas MD Anderson Cancer Center)

  • Amy Spelman

    (The University of Texas MD Anderson Cancer Center)

  • Yasir Y. Elamin

    (The University of Texas MD Anderson Cancer Center)

  • Marcelo V. Negrao

    (The University of Texas MD Anderson Cancer Center)

  • Ferdinandos Skoulidis

    (The University of Texas MD Anderson Cancer Center)

  • Carl M. Gay

    (The University of Texas MD Anderson Cancer Center)

  • Tina Cascone

    (The University of Texas MD Anderson Cancer Center)

  • Saumil J. Gandhi

    (The University of Texas MD Anderson Cancer Center)

  • Steven H. Lin

    (The University of Texas MD Anderson Cancer Center)

  • Percy P. Lee

    (The University of Texas MD Anderson Cancer Center)

  • Brett W. Carter

    (The University of Texas MD Anderson Cancer Center)

  • Carol C. Wu

    (The University of Texas MD Anderson Cancer Center)

  • Mara B. Antonoff

    (The University of Texas MD Anderson Cancer Center)

  • Boris Sepesi

    (The University of Texas MD Anderson Cancer Center)

  • Jeff Lewis

    (The University of Texas MD Anderson Cancer Center)

  • Don L. Gibbons

    (The University of Texas MD Anderson Cancer Center)

  • Ara A. Vaporciyan

    (The University of Texas MD Anderson Cancer Center)

  • Xiuning Le

    (The University of Texas MD Anderson Cancer Center)

  • J. Jack Lee

    (The University of Texas MD Anderson Cancer Center)

  • Sinchita Roy-Chowdhuri

    (The University of Texas MD Anderson Cancer Center)

  • Mark J. Routbort

    (The University of Texas MD Anderson Cancer Center)

  • Justin F. Gainor

    (Massachusetts General Hospital)

  • John V. Heymach

    (The University of Texas MD Anderson Cancer Center)

  • Yanyan Lou

    (Division of Hematology and Oncology, Mayo Clinic)

  • Jia Wu

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center)

  • Jianjun Zhang

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center)

  • Natalie I. Vokes

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center)

Abstract

The role of combination chemotherapy with immune checkpoint inhibitors (ICI) (ICI-chemo) over ICI monotherapy (ICI-mono) in non-small cell lung cancer (NSCLC) remains underexplored. In this retrospective study of 1133 NSCLC patients, treatment with ICI-mono vs ICI-chemo associate with higher rates of early progression, but similar long-term progression-free and overall survival. Sequential vs concurrent ICI and chemotherapy have similar long-term survival, suggesting no synergism from combination therapy. Integrative modeling identified PD-L1, disease burden (Stage IVb; liver metastases), and STK11 and JAK2 alterations as features associate with a higher likelihood of early progression on ICI-mono. CDKN2A alterations associate with worse long-term outcomes in ICI-chemo patients. These results are validated in independent external (n = 89) and internal (n = 393) cohorts. This real-world study suggests that ICI-chemo may protect against early progression but does not influence overall survival, and nominates features that identify those patients at risk for early progression who may maximally benefit from ICI-chemo.

Suggested Citation

  • Lingzhi Hong & Muhammad Aminu & Shenduo Li & Xuetao Lu & Milena Petranovic & Maliazurina B. Saad & Pingjun Chen & Kang Qin & Susan Varghese & Waree Rinsurongkawong & Vadeerat Rinsurongkawong & Amy Spe, 2023. "Efficacy and clinicogenomic correlates of response to immune checkpoint inhibitors alone or with chemotherapy in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36328-z
    DOI: 10.1038/s41467-023-36328-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36328-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36328-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guangchun Han & Guoliang Yang & Dapeng Hao & Yang Lu & Kyaw Thein & Benjamin S. Simpson & Jianfeng Chen & Ryan Sun & Omar Alhalabi & Ruiping Wang & Minghao Dang & Enyu Dai & Shaojun Zhang & Fengqi Nie, 2021. "9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Jacqulyne P. Robichaux & Xiuning Le & R. S. K. Vijayan & J. Kevin Hicks & Simon Heeke & Yasir Y. Elamin & Heather Y. Lin & Hibiki Udagawa & Ferdinandos Skoulidis & Hai Tran & Susan Varghese & Junqin H, 2021. "Structure-based classification predicts drug response in EGFR-mutant NSCLC," Nature, Nature, vol. 597(7878), pages 732-737, September.
    3. Shom Goel & Molly J. DeCristo & April C. Watt & Haley BrinJones & Jaclyn Sceneay & Ben B. Li & Naveed Khan & Jessalyn M. Ubellacker & Shaozhen Xie & Otto Metzger-Filho & Jeremy Hoog & Matthew J. Ellis, 2017. "CDK4/6 inhibition triggers anti-tumour immunity," Nature, Nature, vol. 548(7668), pages 471-475, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Pouyiourou & Bianca N. Kraft & Timothy Wohlfromm & Michael Stahl & Boris Kubuschok & Harald Löffler & Ulrich T. Hacker & Gerdt Hübner & Lena Weiss & Michael Bitzer & Thomas Ernst & Philipp Schüt, 2023. "Nivolumab and ipilimumab in recurrent or refractory cancer of unknown primary: a phase II trial," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Dae Joong Kim & Swetha Anandh & Jamie L. Null & Piotr Przanowski & Sanchita Bhatnagar & Pankaj Kumar & Sarah E. Shelton & Erin E. Grundy & Katherine B. Chiappinelli & Roger D. Kamm & David A. Barbie &, 2023. "Priming a vascular-selective cytokine response permits CD8+ T-cell entry into tumors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Tikvah K. Hayes & Elisa Aquilanti & Nicole S. Persky & Xiaoping Yang & Erica E. Kim & Lisa Brenan & Amy B. Goodale & Douglas Alan & Ted Sharpe & Robert E. Shue & Lindsay Westlake & Lior Golomb & Brian, 2024. "Comprehensive mutational scanning of EGFR reveals TKI sensitivities of extracellular domain mutants," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Shizhong Ke & Fabin Dang & Lin Wang & Jia-Yun Chen & Mandar T. Naik & Wenxue Li & Abhishek Thavamani & Nami Kim & Nandita M. Naik & Huaxiu Sui & Wei Tang & Chenxi Qiu & Kazuhiro Koikawa & Felipe Batal, 2024. "Reciprocal antagonism of PIN1-APC/CCDH1 governs mitotic protein stability and cell cycle entry," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Iris K. Alderwerelt van Rosenburgh & David M. Lu & Michael J. Grant & Steven E. Stayrook & Manali Phadke & Zenta Walther & Sarah B. Goldberg & Katerina Politi & Mark A. Lemmon & Kumar D. Ashtekar & Yu, 2022. "Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Hui Deng & Qian Lei & Chengdi Wang & Zhoufeng Wang & Hai Chen & Gang Wang & Na Yang & Dan Huang & Quanwei Yu & Mengling Yao & Xue Xiao & Guonian Zhu & Cheng Cheng & Yangqian Li & Feng Li & Panwen Tian, 2022. "A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Roberta Piras & Emily Y. Ko & Connor Barrett & Marco Simone & Xianzhi Lin & Marina T. Broz & Fernando H. G. Tessaro & Mireia Castillo-Martin & Carlos Cordon-Cardo & Helen S. Goodridge & Dolores Vizio , 2022. "circCsnk1g3- and circAnkib1-regulated interferon responses in sarcoma promote tumorigenesis by shaping the immune microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Xue Bai & Ze-Qin Guo & Yan-Pei Zhang & Zhen-zhen Fan & Li-Juan Liu & Li Liu & Li-Li Long & Si-Cong Ma & Jian Wang & Yuan Fang & Xin-Ran Tang & Yu-Jie Zeng & Xinghua Pan & De-Hua Wu & Zhong-Yi Dong, 2023. "CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Jana Koch & Sebastian J. Schober & Sruthi V. Hindupur & Caroline Schöning & Florian G. Klein & Klaus Mantwill & Maximilian Ehrenfeld & Ulrike Schillinger & Timmy Hohnecker & Pan Qi & Katja Steiger & M, 2022. "Targeting the Retinoblastoma/E2F repressive complex by CDK4/6 inhibitors amplifies oncolytic potency of an oncolytic adenovirus," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Omar Alhalabi & Jianfeng Chen & Yuxue Zhang & Yang Lu & Qi Wang & Sumankalai Ramachandran & Rebecca Slack Tidwell & Guangchun Han & Xinmiao Yan & Jieru Meng & Ruiping Wang & Anh G. Hoang & Wei-Lien Wa, 2022. "MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Shen Zhao & Wu Zhuang & Baohui Han & Zhengbo Song & Wei Guo & Feng Luo & Lin Wu & Yi Hu & Huijuan Wang & Xiaorong Dong & Da Jiang & Mingxia Wang & Liyun Miao & Qian Wang & Junping Zhang & Zhenming Fu , 2023. "Phase 1b trial of anti-EGFR antibody JMT101 and Osimertinib in EGFR exon 20 insertion-positive non-small-cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Jingjie Yi & Omid Tavana & Huan Li & Donglai Wang & Richard J. Baer & Wei Gu, 2023. "Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Shunli Fu & Lili Chang & Shujun Liu & Tong Gao & Xiao Sang & Zipeng Zhang & Weiwei Mu & Xiaoqing Liu & Shuang Liang & Han Yang & Huizhen Yang & Qingping Ma & Yongjun Liu & Na Zhang, 2023. "Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Sunny Li-Yun Chang & Po-Jen Yang & Yen-You Lin & Ya-Jing Jiang & Po-I Liu & Chang-Lun Huang & Shun-Fa Yang & Chih-Hsin Tang, 2022. "Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma," IJERPH, MDPI, vol. 19(22), pages 1-11, November.
    15. Qiwei Wang & Johann S. Bergholz & Liya Ding & Ziying Lin & Sheheryar K. Kabraji & Melissa E. Hughes & Xiadi He & Shaozhen Xie & Tao Jiang & Weihua Wang & Jason J. Zoeller & Hye-Jung Kim & Thomas M. Ro, 2022. "STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Jian Ma & Lei Li & Bohan Ma & Tianjie Liu & Zixi Wang & Qi Ye & Yunhua Peng & Bin Wang & Yule Chen & Shan Xu & Ke Wang & Fabin Dang & Xinyang Wang & Zixuan Zeng & Yanlin Jian & Zhihua Ren & Yizeng Fan, 2024. "MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Xiajing Gong & Meng Hu & Jinzhong Liu & Geoffrey Kim & James Xu & Amy McKee & Todd Palmby & R. Angelo Claro & Liang Zhao, 2022. "Decoding kinase-adverse event associations for small molecule kinase inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Wei Zhou & Wenxi Wang & Yuxin Liang & Ruibin Jiang & Fensheng Qiu & Xiying Shao & Yang Liu & Le Fang & Maowei Ni & Chenhuan Yu & Yue Zhao & Weijia Huang & Jiong Li & Michael J. Donovan & Lina Wang & J, 2023. "The RNA-binding protein LRPPRC promotes resistance to CDK4/6 inhibition in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36328-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.