IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44813-2.html
   My bibliography  Save this article

Thermal responses of dissolved organic matter under global change

Author

Listed:
  • Ang Hu

    (Chinese Academy of Sciences)

  • Kyoung-Soon Jang

    (Korea Basic Science Institute)

  • Andrew J. Tanentzap

    (University of Cambridge)

  • Wenqian Zhao

    (Chinese Academy of Sciences)

  • Jay T. Lennon

    (Indiana University)

  • Jinfu Liu

    (Chinese Academy of Sciences)

  • Mingjia Li

    (Chinese Academy of Sciences)

  • James Stegen

    (Pacific Northwest National Laboratory)

  • Mira Choi

    (Korea Basic Science Institute)

  • Yahai Lu

    (Peking University)

  • Xiaojuan Feng

    (Chinese Academy of Sciences)

  • Jianjun Wang

    (Chinese Academy of Sciences)

Abstract

The diversity of intrinsic traits of different organic matter molecules makes it challenging to predict how they, and therefore the global carbon cycle, will respond to climate change. Here we develop an indicator of compositional-level environmental response for dissolved organic matter to quantify the aggregated response of individual molecules that positively and negatively associate with warming. We apply the indicator to assess the thermal response of sediment dissolved organic matter in 480 aquatic microcosms along nutrient gradients on three Eurasian mountainsides. Organic molecules consistently respond to temperature change within and across contrasting climate zones. At a compositional level, dissolved organic matter in warmer sites has a stronger thermal response and shows functional reorganization towards molecules with lower thermodynamic favorability for microbial decomposition. The thermal response is more sensitive to warming at higher nutrients, with increased sensitivity of up to 22% for each additional 1 mg L-1 of nitrogen loading. The utility of the thermal response indicator is further confirmed by laboratory experiments and reveals its positive links to greenhouse gas emissions.

Suggested Citation

  • Ang Hu & Kyoung-Soon Jang & Andrew J. Tanentzap & Wenqian Zhao & Jay T. Lennon & Jinfu Liu & Mingjia Li & James Stegen & Mira Choi & Yahai Lu & Xiaojuan Feng & Jianjun Wang, 2024. "Thermal responses of dissolved organic matter under global change," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44813-2
    DOI: 10.1038/s41467-024-44813-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44813-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44813-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cristian Gudasz & David Bastviken & Kristin Steger & Katrin Premke & Sebastian Sobek & Lars J. Tranvik, 2010. "Temperature-controlled organic carbon mineralization in lake sediments," Nature, Nature, vol. 466(7305), pages 478-481, July.
    2. Ang Hu & Mira Choi & Andrew J. Tanentzap & Jinfu Liu & Kyoung-Soon Jang & Jay T. Lennon & Yongqin Liu & Janne Soininen & Xiancai Lu & Yunlin Zhang & Ji Shen & Jianjun Wang, 2022. "Ecological networks of dissolved organic matter and microorganisms under global change," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Liza K. McDonough & Martin S. Andersen & Megan I. Behnke & Helen Rutlidge & Phetdala Oudone & Karina Meredith & Denis M. O’Carroll & Isaac R. Santos & Christopher E. Marjo & Robert G. M. Spencer & Amy, 2022. "A new conceptual framework for the transformation of groundwater dissolved organic matter," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Mark A. Bradford & William R. Wieder & Gordon B. Bonan & Noah Fierer & Peter A. Raymond & Thomas W. Crowther, 2016. "Managing uncertainty in soil carbon feedbacks to climate change," Nature Climate Change, Nature, vol. 6(8), pages 751-758, August.
    5. Laurel M. Lynch & Nicholas A. Sutfin & Timothy S. Fegel & Claudia M. Boot & Timothy P. Covino & Matthew D. Wallenstein, 2019. "River channel connectivity shifts metabolite composition and dissolved organic matter chemistry," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    7. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    8. Changming Fang & Pete Smith & John B. Moncrieff & Jo U. Smith, 2005. "Similar response of labile and resistant soil organic matter pools to changes in temperature," Nature, Nature, vol. 433(7021), pages 57-59, January.
    9. Gabriel Yvon-Durocher & Jane M. Caffrey & Alessandro Cescatti & Matteo Dossena & Paul del Giorgio & Josep M. Gasol & José M. Montoya & Jukka Pumpanen & Peter A. Staehr & Mark Trimmer & Guy Woodward & , 2012. "Reconciling the temperature dependence of respiration across timescales and ecosystem types," Nature, Nature, vol. 487(7408), pages 472-476, July.
    10. Changming Fang & Pete Smith & John B. Moncrieff & Jo U. Smith, 2005. "Erratum: Similar response of labile and resistant soil organic matter pools to changes in temperature," Nature, Nature, vol. 436(7052), pages 881-881, August.
    11. S.J. Goldberg & G.I. Ball & B.C. Allen & S.G. Schladow & A.J. Simpson & H. Masoom & R. Soong & H.D. Graven & L.I. Aluwihare, 2015. "Refractory dissolved organic nitrogen accumulation in high-elevation lakes," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    12. Cristian Gudasz & David Bastviken & Kristin Steger & Katrin Premke & Sebastian Sobek & Lars J. Tranvik, 2010. "Erratum: Temperature-controlled organic carbon mineralization in lake sediments," Nature, Nature, vol. 466(7310), pages 1134-1134, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    4. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    6. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    7. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    8. Xu Yang & Dongsheng Chu & Haibo Hu & Wenbin Deng & Jianyu Chen & Shaojun Guo, 2024. "Effects of Land-Use Type and Salinity on Soil Carbon Mineralization in Coastal Areas of Northern Jiangsu Province," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    9. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    10. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    11. Xuanyu Tao & Zhifeng Yang & Jiajie Feng & Siyang Jian & Yunfeng Yang & Colin T. Bates & Gangsheng Wang & Xue Guo & Daliang Ning & Megan L. Kempher & Xiao Jun A. Liu & Yang Ouyang & Shun Han & Linwei W, 2024. "Experimental warming accelerates positive soil priming in a temperate grassland ecosystem," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Gao, Yanni & Yu, Guirui & Li, Shenggong & Yan, Huimin & Zhu, Xianjin & Wang, Qiufeng & Shi, Peili & Zhao, Liang & Li, Yingnian & Zhang, Fawei & Wang, Yanfen & Zhang, Junhui, 2015. "A remote sensing model to estimate ecosystem respiration in Northern China and the Tibetan Plateau," Ecological Modelling, Elsevier, vol. 304(C), pages 34-43.
    13. Tuomi, Mikko & Vanhala, Pekka & Karhu, Kristiina & Fritze, Hannu & Liski, Jari, 2008. "Heterotrophic soil respiration—Comparison of different models describing its temperature dependence," Ecological Modelling, Elsevier, vol. 211(1), pages 182-190.
    14. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Philipp Emanuel Hirsch & Moritz Schillinger & Katharina Appoloni & Patricia Burkhardt-Holm & Hannes Weigt, 2016. "Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower," Sustainability, MDPI, vol. 8(9), pages 1-20, August.
    16. Nicholas O. E. Ofiti & Michael W. I. Schmidt & Samuel Abiven & Paul J. Hanson & Colleen M. Iversen & Rachel M. Wilson & Joel E. Kostka & Guido L. B. Wiesenberg & Avni Malhotra, 2023. "Climate warming and elevated CO2 alter peatland soil carbon sources and stability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Nobre, Regina & Boulêtreau, Stéphanie & Colas, Fanny & Azemar, Frederic & Tudesque, Loïc & Parthuisot, Nathalie & Favriou, Pierre & Cucherousset, Julien, 2023. "Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Chihiro Matsuoka-Uno & Toru Uno & Ryosuke Tajima & Toyoaki Ito & Masanori Saito, 2022. "Liming and Phosphate Application Influence Soil Carbon and Nitrogen Mineralization Differently in Response to Temperature Regimes in Allophanic Andosols," Agriculture, MDPI, vol. 12(2), pages 1-10, January.
    20. Jing Tian & Jennifer A. J. Dungait & Ruixing Hou & Ye Deng & Iain P. Hartley & Yunfeng Yang & Yakov Kuzyakov & Fusuo Zhang & M. Francesca Cotrufo & Jizhong Zhou, 2024. "Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44813-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.