IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44484-5.html
   My bibliography  Save this article

rworkflows: automating reproducible practices for the R community

Author

Listed:
  • Brian M. Schilder

    (Faculty of Medicine, Imperial College London
    UK Dementia Research Institute at Imperial College London)

  • Alan E. Murphy

    (Faculty of Medicine, Imperial College London
    UK Dementia Research Institute at Imperial College London)

  • Nathan G. Skene

    (Faculty of Medicine, Imperial College London
    UK Dementia Research Institute at Imperial College London)

Abstract

Despite calls to improve reproducibility in research, achieving this goal remains elusive even within computational fields. Currently, >50% of R packages are distributed exclusively through GitHub. While the trend towards sharing open-source software has been revolutionary, GitHub does not have any default built-in checks for minimal coding standards or software usability. This makes it difficult to assess the current quality R packages, or to consistently use them over time and across platforms. While GitHub-native solutions are technically possible, they require considerable time and expertise for each developer to write, implement, and maintain. To address this, we develop rworkflows; a suite of tools to make robust continuous integration and deployment ( https://github.com/neurogenomics/rworkflows ). rworkflows can be implemented by developers of all skill levels using a one-time R function call which has both sensible defaults and extensive options for customisation. Once implemented, any updates to the GitHub repository automatically trigger parallel workflows that install all software dependencies, run code checks, generate a dedicated documentation website, and deploy a publicly accessible containerised environment. By making the rworkflows suite free, automated, and simple to use, we aim to promote widespread adoption of reproducible practices across a continually growing R community.

Suggested Citation

  • Brian M. Schilder & Alan E. Murphy & Nathan G. Skene, 2024. "rworkflows: automating reproducible practices for the R community," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44484-5
    DOI: 10.1038/s41467-023-44484-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44484-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44484-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Lawrence & Wolfgang Huber & Hervé Pagès & Patrick Aboyoun & Marc Carlson & Robert Gentleman & Martin T Morgan & Vincent J Carey, 2013. "Software for Computing and Annotating Genomic Ranges," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-10, August.
    2. Maria Petrescu & Anjala S. Krishen, 2022. "The evolving crisis of the peer-review process," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 185-186, September.
    3. Chris Woolston, 2021. "How burnout and imposter syndrome blight scientific careers," Nature, Nature, vol. 599(7886), pages 703-705, November.
    4. Monya Baker, 2016. "1,500 scientists lift the lid on reproducibility," Nature, Nature, vol. 533(7604), pages 452-454, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poonam Dhillon & Kelly Ann Mulholland & Hailong Hu & Jihwan Park & Xin Sheng & Amin Abedini & Hongbo Liu & Allison Vassalotti & Junnan Wu & Katalin Susztak, 2023. "Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Anjala S. Krishen & Maria Petrescu, 2022. "Is all academic service distributed equally?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(4), pages 297-298, December.
    5. Peter Harremoës, 2019. "Replication Papers," Publications, MDPI, vol. 7(3), pages 1-8, July.
    6. Fernando Hoces de la Guardia & Sean Grant & Edward Miguel, 2021. "A framework for open policy analysis," Science and Public Policy, Oxford University Press, vol. 48(2), pages 154-163.
    7. Quentin I. B. Lemaître & Natascha Bartsch & Ian U. Kouzel & Henriette Busengdal & Gemma Sian Richards & Patrick R. H. Steinmetz & Fabian Rentzsch, 2023. "NvPrdm14d-expressing neural progenitor cells contribute to non-ectodermal neurogenesis in Nematostella vectensis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Antonella Lanati & Marinella Marzano & Caterina Manzari & Bruno Fosso & Graziano Pesole & Francesca De Leo, 2019. "Management at the service of research: ReOmicS, a quality management system for omics sciences," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-13, December.
    9. Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Joel Ferguson & Rebecca Littman & Garret Christensen & Elizabeth Levy Paluck & Nicholas Swanson & Zenan Wang & Edward Miguel & David Birke & John-Henry Pezzuto, 2023. "Survey of open science practices and attitudes in the social sciences," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Erastus Karanja & Aditya Sharma & Ibrahim Salama, 2020. "What does MIS survey research reveal about diversity and representativeness in the MIS field? A content analysis approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1583-1628, March.
    12. Yanming Ren & Zongyao Huang & Lingling Zhou & Peng Xiao & Junwei Song & Ping He & Chuanxing Xie & Ran Zhou & Menghan Li & Xiangqun Dong & Qing Mao & Chao You & Jianguo Xu & Yanhui Liu & Zhigang Lan & , 2023. "Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Tiago C. Luis & Nikolaos Barkas & Joana Carrelha & Alice Giustacchini & Stefania Mazzi & Ruggiero Norfo & Bishan Wu & Affaf Aliouat & Jose A. Guerrero & Alba Rodriguez-Meira & Tiphaine Bouriez-Jones &, 2023. "Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Bor Luen Tang, 2023. "Some Insights into the Factors Influencing Continuous Citation of Retracted Scientific Papers," Publications, MDPI, vol. 11(4), pages 1-14, October.
    15. Michael R. Kelly & Kamila Wisniewska & Matthew J. Regner & Michael W. Lewis & Andrea A. Perreault & Eric S. Davis & Douglas H. Phanstiel & Joel S. Parker & Hector L. Franco, 2022. "A multi-omic dissection of super-enhancer driven oncogenic gene expression programs in ovarian cancer," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    16. Komal Soni & Anusree Sivadas & Attila Horvath & Nikolay Dobrev & Rippei Hayashi & Leo Kiss & Bernd Simon & Klemens Wild & Irmgard Sinning & Tamás Fischer, 2023. "Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Rosenblatt, Lucas & Herman, Bernease & Holovenko, Anastasia & Lee, Wonkwon & Loftus, Joshua & McKinnie, Elizabeth & Rumezhak, Taras & Stadnik, Andrii & Howe, Bill & Stoyanovich, Julia, 2023. "Epistemic parity: reproducibility as an evaluation metric for differential privacy," LSE Research Online Documents on Economics 120493, London School of Economics and Political Science, LSE Library.
    18. Yuki Matsushita & Jialin Liu & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Mizuki Nagata & Yuki Arai & Wanida Ono & Kouhei Yamamoto & Thomas L. Saunders & Joshua D. Welch & Noriaki Ono, 2023. "Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    19. Inga Patarčić & Jadranka Stojanovski, 2022. "Adoption of Transparency and Openness Promotion (TOP) Guidelines across Journals," Publications, MDPI, vol. 10(4), pages 1-10, November.
    20. Susanne Wieschowski & Svenja Biernot & Susanne Deutsch & Silke Glage & André Bleich & René Tolba & Daniel Strech, 2019. "Publication rates in animal research. Extent and characteristics of published and non-published animal studies followed up at two German university medical centres," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-8, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44484-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.