GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-44017-0
Download full text from publisher
References listed on IDEAS
- Haoyang Li & Juexiao Zhou & Zhongxiao Li & Siyuan Chen & Xingyu Liao & Bin Zhang & Ruochi Zhang & Yu Wang & Shiwei Sun & Xin Gao, 2023. "A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Kangning Dong & Shihua Zhang, 2022. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Yahui Long & Kok Siong Ang & Mengwei Li & Kian Long Kelvin Chong & Raman Sethi & Chengwei Zhong & Hang Xu & Zhiwei Ong & Karishma Sachaphibulkij & Ao Chen & Li Zeng & Huazhu Fu & Min Wu & Lina Hsiu Ki, 2023. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peng Zhang & Chaofei Gao & Zhuoyu Zhang & Zhiyuan Yuan & Qian Zhang & Ping Zhang & Shiyu Du & Weixun Zhou & Yan Li & Shao Li, 2025. "Systematic inference of super-resolution cell spatial profiles from histology images," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
- Jingyang Qian & Xin Shao & Hudong Bao & Yin Fang & Wenbo Guo & Chengyu Li & Anyao Li & Hua Hua & Xiaohui Fan, 2025. "Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
- Kaichen Xu & Yan Lu & Suyang Hou & Kainan Liu & Yihang Du & Mengqian Huang & Hao Feng & Hao Wu & Xiaobo Sun, 2024. "Detecting anomalous anatomic regions in spatial transcriptomics with STANDS," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
- Mingze Dong & David G. Su & Harriet Kluger & Rong Fan & Yuval Kluger, 2025. "SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
- Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
- Yitao Yang & Yang Cui & Xin Zeng & Yubo Zhang & Martin Loza & Sung-Joon Park & Kenta Nakai, 2025. "STAIG: Spatial transcriptomics analysis via image-aided graph contrastive learning for domain exploration and alignment-free integration," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
- Yuqiao Gong & Xin Yuan & Qiong Jiao & Zhangsheng Yu, 2025. "Unveiling fine-scale spatial structures and amplifying gene expression signals in ultra-large ST slices with HERGAST," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
- Chunman Zuo & Junjie Xia & Luonan Chen, 2024. "Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Jincan Ke & Jian Xu & Jia Liu & Yumeng Yang & Chenkai Guo & Bingbing Xie & Guizhong Cui & Guangdun Peng & Shengbao Suo, 2025. "High-resolution mapping of single cells in spatial context," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
- Yuyao Liu & Zhen Li & Xiaoyang Chen & Xuejian Cui & Zijing Gao & Rui Jiang, 2025. "INSTINCT: Multi-sample integration of spatial chromatin accessibility sequencing data via stochastic domain translation," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
- Danni Hong & Muya Shu & Jiamao Liu & Lifang Liu & Hao Cheng & Ming Zhu & Yi Du & Bo Xu & Di Hu & Zhiyong Liu & Yannan Zhao & Jianwu Dai & Falong Lu & Jialiang Huang, 2025. "Divergent combinations of enhancers encode spatial gene expression," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
- Guanshen Cui & Kangning Dong & Jia-Yi Zhou & Shang Li & Ying Wu & Qinghua Han & Bofei Yao & Qunlun Shen & Yong-Liang Zhao & Ying Yang & Jun Cai & Shihua Zhang & Yun-Gui Yang, 2023. "Spatiotemporal transcriptomic atlas reveals the dynamic characteristics and key regulators of planarian regeneration," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Chen Zhang & Junhui Gao & Hong-Yu Chen & Lingxin Kong & Guangshuo Cao & Xiangyu Guo & Wei Liu & Bin Ren & Dong-Qing Wei, 2024. "STGIC: A graph and image convolution-based method for spatial transcriptomic clustering," PLOS Computational Biology, Public Library of Science, vol. 20(2), pages 1-24, February.
- Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Xiaomeng Wan & Jiashun Xiao & Sindy Sing Ting Tam & Mingxuan Cai & Ryohichi Sugimura & Yang Wang & Xiang Wan & Zhixiang Lin & Angela Ruohao Wu & Can Yang, 2023. "Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- Chunman Zuo & Yijian Zhang & Chen Cao & Jinwang Feng & Mingqi Jiao & Luonan Chen, 2022. "Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Shuangsang Fang & Mengyang Xu & Lei Cao & Xiaobin Liu & Marija Bezulj & Liwei Tan & Zhiyuan Yuan & Yao Li & Tianyi Xia & Longyu Guo & Vladimir Kovacevic & Junhou Hui & Lidong Guo & Chao Liu & Mengnan , 2025. "Stereopy: modeling comparative and spatiotemporal cellular heterogeneity via multi-sample spatial transcriptomics," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
- Linhua Wang & Mirjana Maletic-Savatic & Zhandong Liu, 2022. "Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44017-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.