IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43643-y.html
   My bibliography  Save this article

A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus

Author

Listed:
  • Peng Liu

    (Ningbo University)

  • Chaonan Shi

    (Henan Agricultural University)

  • Shuang Liu

    (Ningbo University)

  • Jiajia Lei

    (Ningbo University)

  • Qisen Lu

    (Ningbo University)

  • Haichao Hu

    (Ningbo University)

  • Yan Ren

    (Henan Agricultural University)

  • Ning Zhang

    (Henan Agricultural University)

  • Congwei Sun

    (Henan Agricultural University)

  • Lu Chen

    (Ningbo University)

  • Yaoyao Jiang

    (Ningbo University)

  • Lixiao Feng

    (Ningbo University)

  • Tianye Zhang

    (Ningbo University)

  • Kaili Zhong

    (Ningbo University)

  • Jiaqian Liu

    (Ningbo University)

  • Juan Zhang

    (Ningbo University)

  • Zhuo Zhang

    (Hunan Academy of Agricultural Sciences)

  • Bingjian Sun

    (Henan Agricultural University)

  • Jianping Chen

    (Ningbo University)

  • Yimiao Tang

    (Beijing Academy of Agriculture and Forestry Sciences)

  • Feng Chen

    (Henan Agricultural University)

  • Jian Yang

    (Ningbo University)

Abstract

Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a alanine to serine substitution and this substitution enables the phosphorylation of Serine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.

Suggested Citation

  • Peng Liu & Chaonan Shi & Shuang Liu & Jiajia Lei & Qisen Lu & Haichao Hu & Yan Ren & Ning Zhang & Congwei Sun & Lu Chen & Yaoyao Jiang & Lixiao Feng & Tianye Zhang & Kaili Zhong & Jiaqian Liu & Juan Z, 2023. "A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43643-y
    DOI: 10.1038/s41467-023-43643-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43643-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43643-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zongyu Gao & Dingliang Zhang & Xiaoling Wang & Xin Zhang & Zhiyan Wen & Qianshen Zhang & Dawei Li & Savithramma P. Dinesh-Kumar & Yongliang Zhang, 2022. "Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Ying-Lan Chen & Fan-Wei Lin & Kai-Tan Cheng & Chi-Hsin Chang & Sheng-Chi Hung & Thomas Efferth & Yet-Ran Chen, 2023. "XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Han Lin & Meng-Yun Xu & Chuan-Chih Hsu & Florensia Ariani Damei & Hui-Chun Lee & Wei-Lun Tsai & Cuong V. Hoang & Yin-Ru Chiang & Lay-Sun Ma, 2023. "Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43643-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.