IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42510-0.html
   My bibliography  Save this article

High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2

Author

Listed:
  • Ruijin Sun

    (China University of Geosciences, Beijing (CUGB))

  • Jun Deng

    (Chinese Academy of Science)

  • Xiaowei Wu

    (Chinese Academy of Science)

  • Munan Hao

    (Chinese Academy of Science)

  • Ke Ma

    (Chinese Academy of Science
    University of Chinese Academy of Sciences)

  • Yuxin Ma

    (Chinese Academy of Science)

  • Changchun Zhao

    (China University of Geosciences, Beijing (CUGB))

  • Dezhong Meng

    (China University of Geosciences, Beijing (CUGB))

  • Xiaoyu Ji

    (Chinese Academy of Science
    Liaoning University)

  • Yiyang Ding

    (Imperial College London)

  • Yu Pang

    (Huazhong University of Science and Technology)

  • Xin Qian

    (Huazhong University of Science and Technology)

  • Ronggui Yang

    (Huazhong University of Science and Technology)

  • Guodong Li

    (Chinese Academy of Science)

  • Zhilin Li

    (Chinese Academy of Science)

  • Linjie Dai

    (Cavendish Laboratory, 19 JJ Thomson Avenue)

  • Tianping Ying

    (Chinese Academy of Science)

  • Huaizhou zhao

    (Chinese Academy of Science)

  • Shixuan Du

    (Chinese Academy of Science)

  • Gang Li

    (Chinese Academy of Science)

  • Shifeng Jin

    (Chinese Academy of Science
    University of Chinese Academy of Sciences)

  • Xiaolong Chen

    (Chinese Academy of Science
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

Abstract

Interlayer decoupling plays an essential role in realizing unprecedented properties in atomically thin materials, but it remains relatively unexplored in the bulk. It is unclear how to realize a large crystal that behaves as its monolayer counterpart by artificial manipulation. Here, we construct a superlattice consisting of alternating layers of NbSe2 and highly porous hydroxide, as a proof of principle for realizing interlayer decoupling in bulk materials. In (NaOH)0.5NbSe2, the electric decoupling is manifested by an ideal 1D insulating state along the interlayer direction. Vibration decoupling is demonstrated through the absence of interlayer models in the Raman spectrum, dominant local modes in heat capacity, low interlayer coupling energy and out-of-plane thermal conductivity (0.28 W/mK at RT) that are reduced to a few percent of NbSe2’s. Consequently, a drastic enhancement of CDW transition temperature (>110 K) and Pauling-breaking 2D superconductivity is observed, suggesting that the bulk crystal behaves similarly to an exfoliated NbSe2 monolayer. Our findings provide a route to achieve intrinsic 2D properties on a large-scale without exfoliation.

Suggested Citation

  • Ruijin Sun & Jun Deng & Xiaowei Wu & Munan Hao & Ke Ma & Yuxin Ma & Changchun Zhao & Dezhong Meng & Xiaoyu Ji & Yiyang Ding & Yu Pang & Xin Qian & Ronggui Yang & Guodong Li & Zhilin Li & Linjie Dai & , 2023. "High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42510-0
    DOI: 10.1038/s41467-023-42510-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42510-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42510-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingsi Qiao & Xianghua Kong & Zhi-Xin Hu & Feng Yang & Wei Ji, 2014. "High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    2. Yuan Huang & Yu-Hao Pan & Rong Yang & Li-Hong Bao & Lei Meng & Hai-Lan Luo & Yong-Qing Cai & Guo-Dong Liu & Wen-Juan Zhao & Zhang Zhou & Liang-Mei Wu & Zhi-Li Zhu & Ming Huang & Li-Wei Liu & Lei Liu &, 2020. "Universal mechanical exfoliation of large-area 2D crystals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Xiang Chen & Yong Ju Park & Minpyo Kang & Seung-Kyun Kang & Jahyun Koo & Sachin M. Shinde & Jiho Shin & Seunghyun Jeon & Gayoung Park & Ying Yan & Matthew R. MacEwan & Wilson Z. Ray & Kyung-Mi Lee & J, 2018. "CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Paribesh Acharyya & Tanmoy Ghosh & Koushik Pal & Kewal Singh Rana & Moinak Dutta & Diptikanta Swain & Martin Etter & Ajay Soni & Umesh V. Waghmare & Kanishka Biswas, 2022. "Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    6. Sefaattin Tongay & Hasan Sahin & Changhyun Ko & Alex Luce & Wen Fan & Kai Liu & Jian Zhou & Ying-Sheng Huang & Ching-Hwa Ho & Jinyuan Yan & D. Frank Ogletree & Shaul Aloni & Jie Ji & Shushen Li & Jing, 2014. "Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Álvaro Jiménez-Galán & Chandler Bossaer & Guilmot Ernotte & Andrew M. Parks & Rui E. F. Silva & David M. Villeneuve & André Staudte & Thomas Brabec & Adina Luican-Mayer & Giulio Vampa, 2023. "Orbital perspective on high-harmonic generation from solids," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Wenhao Ran & Zhihui Ren & Pan Wang & Yongxu Yan & Kai Zhao & Linlin Li & Zhexin Li & Lili Wang & Juehan Yang & Zhongming Wei & Zheng Lou & Guozhen Shen, 2021. "Integrated polarization-sensitive amplification system for digital information transmission," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Heng Wang & Yuying Zhu & Zhonghua Bai & Zechao Wang & Shuxu Hu & Hong-Yi Xie & Xiaopeng Hu & Jian Cui & Miaoling Huang & Jianhao Chen & Ying Ding & Lin Zhao & Xinyan Li & Qinghua Zhang & Lin Gu & X. J, 2023. "Prominent Josephson tunneling between twisted single copper oxide planes of Bi2Sr2-xLaxCuO6+y," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Jonas B. Profe & Dante M. Kennes, 2022. "TU $$^2$$ 2 FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-13, March.
    18. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Ricky Dwi Septianto & Retno Miranti & Tomoka Kikitsu & Takaaki Hikima & Daisuke Hashizume & Nobuhiro Matsushita & Yoshihiro Iwasa & Satria Zulkarnaen Bisri, 2023. "Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42510-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.