IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42779-1.html
   My bibliography  Save this article

Emergent superconductivity in topological-kagome-magnet/metal heterostructures

Author

Listed:
  • He Wang

    (Peking University
    Capital Normal University)

  • Yanzhao Liu

    (Peking University)

  • Ming Gong

    (Peking University)

  • Hua Jiang

    (Soochow University)

  • Xiaoyue Gao

    (Peking University)

  • Wenlong Ma

    (Peking University)

  • Jiawei Luo

    (Peking University)

  • Haoran Ji

    (Peking University)

  • Jun Ge

    (Peking University)

  • Shuang Jia

    (Peking University)

  • Peng Gao

    (Peking University)

  • Ziqiang Wang

    (Boston College)

  • X. C. Xie

    (Peking University
    Hefei National Laboratory
    Fudan University)

  • Jian Wang

    (Peking University
    Hefei National Laboratory
    Collaborative Innovation Center of Quantum Matter)

Abstract

Itinerant kagome lattice magnets exhibit many novel correlated and topological quantum electronic states with broken time-reversal symmetry. Superconductivity, however, has not been observed in this class of materials, presenting a roadblock in a promising path toward topological superconductivity. Here, we report that novel superconductivity can emerge at the interface of kagome Chern magnet TbMn6Sn6 and metal heterostructures when elemental metallic thin films are deposited on either the top (001) surface or the side surfaces. Superconductivity is also successfully induced and systematically studied by using various types of metallic tips on different TbMn6Sn6 surfaces in point-contact measurements. The anisotropy of the superconducting upper critical field suggests that the emergent superconductivity is quasi-two-dimensional. Remarkably, the interface superconductor couples to the magnetic order of the kagome metal and exhibits a hysteretic magnetoresistance in the superconducting states. Taking into account the spin-orbit coupling, the observed interface superconductivity can be a surprising and more realistic realization of the p-wave topological superconductors theoretically proposed for two-dimensional semiconductors proximity-coupled to s-wave superconductors and insulating ferromagnets. Our findings of robust superconductivity in topological-Chern-magnet/metal heterostructures offer a new direction for investigating spin-triplet pairing and topological superconductivity.

Suggested Citation

  • He Wang & Yanzhao Liu & Ming Gong & Hua Jiang & Xiaoyue Gao & Wenlong Ma & Jiawei Luo & Haoran Ji & Jun Ge & Shuang Jia & Peng Gao & Ziqiang Wang & X. C. Xie & Jian Wang, 2023. "Emergent superconductivity in topological-kagome-magnet/metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42779-1
    DOI: 10.1038/s41467-023-42779-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42779-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42779-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dai Aoki & Andrew Huxley & Eric Ressouche & Daniel Braithwaite & Jacques Flouquet & Jean-Pascal Brison & Elsa Lhotel & Carley Paulsen, 2001. "Coexistence of superconductivity and ferromagnetism in URhGe," Nature, Nature, vol. 413(6856), pages 613-616, October.
    2. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    3. A. Gozar & G. Logvenov & L. Fitting Kourkoutis & A. T. Bollinger & L. A. Giannuzzi & D. A. Muller & I. Bozovic, 2008. "High-temperature interface superconductivity between metallic and insulating copper oxides," Nature, Nature, vol. 455(7214), pages 782-785, October.
    4. Jia-Xin Yin & Wenlong Ma & Tyler A. Cochran & Xitong Xu & Songtian S. Zhang & Hung-Ju Tien & Nana Shumiya & Guangming Cheng & Kun Jiang & Biao Lian & Zhida Song & Guoqing Chang & Ilya Belopolski & Dan, 2020. "Quantum-limit Chern topological magnetism in TbMn6Sn6," Nature, Nature, vol. 583(7817), pages 533-536, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Y. Shen & C. Y. Shi & Z. M. Pan & L. L. Ju & M. D. Dong & G. F. Chen & Y. C. Zhang & J. K. Yuan & C. J. Wu & Y. W. Xie & J. Wu, 2023. "Reentrance of interface superconductivity in a high-Tc cuprate heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    10. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Huimin Zhang & Basu Dev Oli & Qiang Zou & Xu Guo & Zhengfei Wang & Lian Li, 2023. "Visualizing symmetry-breaking electronic orders in epitaxial Kagome magnet FeSn films," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Boqin Song & Tianping Ying & Xianxin Wu & Wei Xia & Qiangwei Yin & Qinghua Zhang & Yanpeng Song & Xiaofan Yang & Jiangang Guo & Lin Gu & Xiaolong Chen & Jiangping Hu & Andreas P. Schnyder & Hechang Le, 2023. "Anomalous enhancement of charge density wave in kagome superconductor CsV3Sb5 approaching the 2D limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Jonas B. Profe & Dante M. Kennes, 2022. "TU $$^2$$ 2 FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-13, March.
    17. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Ricky Dwi Septianto & Retno Miranti & Tomoka Kikitsu & Takaaki Hikima & Daisuke Hashizume & Nobuhiro Matsushita & Yoshihiro Iwasa & Satria Zulkarnaen Bisri, 2023. "Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42779-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.