IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42441-w.html
   My bibliography  Save this article

Continuous multiplexed population representations of task context in the mouse primary visual cortex

Author

Listed:
  • Márton Albert Hajnal

    (Wigner Research Center for Physics)

  • Duy Tran

    (University of California, Los Angeles
    Albert Einstein College of Medicine)

  • Michael Einstein

    (University of California, Los Angeles)

  • Mauricio Vallejo Martelo

    (University of California, Los Angeles)

  • Karen Safaryan

    (University of California, Los Angeles)

  • Pierre-Olivier Polack

    (Rutgers University)

  • Peyman Golshani

    (University of California, Los Angeles
    University of California, Los Angeles
    West Los Angeles VA Medical Center)

  • Gergő Orbán

    (Wigner Research Center for Physics)

Abstract

Effective task execution requires the representation of multiple task-related variables that determine how stimuli lead to correct responses. Even the primary visual cortex (V1) represents other task-related variables such as expectations, choice, and context. However, it is unclear how V1 can flexibly accommodate these variables without interfering with visual representations. We trained mice on a context-switching cross-modal decision task, where performance depends on inferring task context. We found that the context signal that emerged in V1 was behaviorally relevant as it strongly covaried with performance, independent from movement. Importantly, this signal was integrated into V1 representation by multiplexing visual and context signals into orthogonal subspaces. In addition, auditory and choice signals were also multiplexed as these signals were orthogonal to the context representation. Thus, multiplexing allows V1 to integrate visual inputs with other sensory modalities and cognitive variables to avoid interference with the visual representation while ensuring the maintenance of task-relevant variables.

Suggested Citation

  • Márton Albert Hajnal & Duy Tran & Michael Einstein & Mauricio Vallejo Martelo & Karen Safaryan & Pierre-Olivier Polack & Peyman Golshani & Gergő Orbán, 2023. "Continuous multiplexed population representations of task context in the mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42441-w
    DOI: 10.1038/s41467-023-42441-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42441-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42441-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. József Fiser & Chiayu Chiu & Michael Weliky, 2004. "Small modulation of ongoing cortical dynamics by sensory input during natural vision," Nature, Nature, vol. 431(7008), pages 573-578, September.
    2. Gerald N. Pho & Michael J. Goard & Jonathan Woodson & Benjamin Crawford & Mriganka Sur, 2018. "Task-dependent representations of stimulus and choice in mouse parietal cortex," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    3. Aman B. Saleem & E. Mika Diamanti & Julien Fournier & Kenneth D. Harris & Matteo Carandini, 2018. "Coherent encoding of subjective spatial position in visual cortex and hippocampus," Nature, Nature, vol. 562(7725), pages 124-127, October.
    4. James B. Heald & Máté Lengyel & Daniel M. Wolpert, 2021. "Contextual inference underlies the learning of sensorimotor repertoires," Nature, Nature, vol. 600(7889), pages 489-493, December.
    5. Jonathan D. Wallis & Kathleen C. Anderson & Earl K. Miller, 2001. "Single neurons in prefrontal cortex encode abstract rules," Nature, Nature, vol. 411(6840), pages 953-956, June.
    6. Ralf D. Wimmer & L. Ian Schmitt & Thomas J. Davidson & Miho Nakajima & Karl Deisseroth & Michael M. Halassa, 2015. "Thalamic control of sensory selection in divided attention," Nature, Nature, vol. 526(7575), pages 705-709, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    2. Anthony Randal McIntosh & Natasa Kovacevic & Roxane J Itier, 2008. "Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-9, July.
    3. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    5. Daigo Takeuchi & Dheeraj Roy & Shruti Muralidhar & Takashi Kawai & Andrea Bari & Chanel Lovett & Heather A. Sullivan & Ian R. Wickersham & Susumu Tonegawa, 2022. "Cingulate-motor circuits update rule representations for sequential choice decisions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Yang Yiling & Katharine Shapcott & Alina Peter & Johanna Klon-Lipok & Huang Xuhui & Andreea Lazar & Wolf Singer, 2023. "Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Arno Onken & Jue Xie & Stefano Panzeri & Camillo Padoa-Schioppa, 2019. "Categorical encoding of decision variables in orbitofrontal cortex," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-27, October.
    8. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    9. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. R Becket Ebitz & Brianna J Sleezer & Hank P Jedema & Charles W Bradberry & Benjamin Y Hayden, 2019. "Tonic exploration governs both flexibility and lapses," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-37, November.
    11. Francesco Ceccarelli & Lorenzo Ferrucci & Fabrizio Londei & Surabhi Ramawat & Emiliano Brunamonti & Aldo Genovesio, 2023. "Static and dynamic coding in distinct cell types during associative learning in the prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
    13. Matthijs N. Oude Lohuis & Jean L. Pie & Pietro Marchesi & Jorrit S. Montijn & Christiaan P. J. Kock & Cyriel M. A. Pennartz & Umberto Olcese, 2022. "Multisensory task demands temporally extend the causal requirement for visual cortex in perception," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Kevin K. Sit & Michael J. Goard, 2023. "Coregistration of heading to visual cues in retrosplenial cortex," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Florian Raudies & Eric A Zilli & Michael E Hasselmo, 2014. "Deep Belief Networks Learn Context Dependent Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.
    17. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Gabriel D Puccini & Albert Compte & Miguel Maravall, 2006. "Stimulus Dependence of Barrel Cortex Directional Selectivity," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-6, December.
    19. Ali Ghazizadeh & Okihide Hikosaka, 2022. "Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Maxime Lemieux & Narges Karimi & Frederic Bretzner, 2024. "Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42441-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.