IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41526-w.html
   My bibliography  Save this article

Neural representation of goal direction in the monarch butterfly brain

Author

Listed:
  • M. Jerome Beetz

    (University of Würzburg)

  • Christian Kraus

    (University of Würzburg
    Norwegian University of Science and Technology)

  • Basil el Jundi

    (University of Würzburg
    Norwegian University of Science and Technology)

Abstract

Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals.

Suggested Citation

  • M. Jerome Beetz & Christian Kraus & Basil el Jundi, 2023. "Neural representation of goal direction in the monarch butterfly brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41526-w
    DOI: 10.1038/s41467-023-41526-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41526-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41526-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason J. Moore & Jesse D. Cushman & Lavanya Acharya & Briana Popeney & Mayank R. Mehta, 2021. "Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation," Nature, Nature, vol. 599(7885), pages 442-448, November.
    2. Shuai Zhan & Wei Zhang & Kristjan Niitepõld & Jeremy Hsu & Juan Fernández Haeger & Myron P. Zalucki & Sonia Altizer & Jacobus C. de Roode & Steven M. Reppert & Marcus R. Kronforst, 2014. "The genetics of monarch butterfly migration and warning colouration," Nature, Nature, vol. 514(7522), pages 317-321, October.
    3. Jenny Lu & Amir H. Behbahani & Lydia Hamburg & Elena A. Westeinde & Paul M. Dawson & Cheng Lyu & Gaby Maimon & Michael H. Dickinson & Shaul Druckmann & Rachel I. Wilson, 2022. "Transforming representations of movement from body- to world-centric space," Nature, Nature, vol. 601(7891), pages 98-104, January.
    4. Johannes D. Seelig & Vivek Jayaraman, 2015. "Neural dynamics for landmark orientation and angular path integration," Nature, Nature, vol. 521(7551), pages 186-191, May.
    5. Arseny Finkelstein & Dori Derdikman & Alon Rubin & Jakob N. Foerster & Liora Las & Nachum Ulanovsky, 2015. "Three-dimensional head-direction coding in the bat brain," Nature, Nature, vol. 517(7533), pages 159-164, January.
    6. J. P. Shine & J. P. Valdés-Herrera & C. Tempelmann & T. Wolbers, 2019. "Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculum," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew M. M. Matheson & Aaron J. Lanz & Ashley M. Medina & Al M. Licata & Timothy A. Currier & Mubarak H. Syed & Katherine I. Nagel, 2022. "A neural circuit for wind-guided olfactory navigation," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Laura Hermans & Murat Kaynak & Jonas Braun & Victor Lobato Ríos & Chin-Lin Chen & Adam Friedberg & Semih Günel & Florian Aymanns & Mahmut Selman Sakar & Pavan Ramdya, 2022. "Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Shanel C Pickard & David J Bertsch & Zoe Le Garrec & Roy E Ritzmann & Roger D Quinn & Nicholas S Szczecinski, 2021. "Internal state effects on behavioral shifts in freely behaving praying mantises (Tenodera sinensis)," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    5. Guillaume Etter & Suzanne Veldt & Jisoo Choi & Sylvain Williams, 2023. "Optogenetic frequency scrambling of hippocampal theta oscillations dissociates working memory retrieval from hippocampal spatiotemporal codes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    7. Xu Zhan & Chao Chen & Longgang Niu & Xinran Du & Ying Lei & Rui Dan & Zhao-Wen Wang & Ping Liu, 2023. "Locomotion modulates olfactory learning through proprioception in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Kevin K. Sit & Michael J. Goard, 2023. "Coregistration of heading to visual cues in retrosplenial cortex," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41526-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.