IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41264-z.html
   My bibliography  Save this article

Panoramic analysis of coronaviruses carried by representative bat species in Southern China to better understand the coronavirus sphere

Author

Listed:
  • Yelin Han

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Chinese Academy of Medical Sciences & Peking Union Medical College
    Ministry of Education
    Chinese Academy of Medical Sciences)

  • Panpan Xu

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Chinese Academy of Medical Sciences & Peking Union Medical College
    Ministry of Education
    Chinese Academy of Medical Sciences)

  • Yuyang Wang

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Chinese Academy of Medical Sciences & Peking Union Medical College
    Ministry of Education
    Chinese Academy of Medical Sciences)

  • Wenliang Zhao

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Chinese Academy of Medical Sciences & Peking Union Medical College
    Ministry of Education
    Chinese Academy of Medical Sciences)

  • Junpeng Zhang

    (Shenyang Agricultural University)

  • Shuyi Zhang

    (Shenyang Agricultural University)

  • Jianwei Wang

    (Chinese Academy of Medical Sciences & Peking Union Medical College)

  • Qi Jin

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Ministry of Education
    Chinese Academy of Medical Sciences)

  • Zhiqiang Wu

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Chinese Academy of Medical Sciences & Peking Union Medical College
    Ministry of Education
    Chinese Academy of Medical Sciences)

Abstract

Bats, recognized as considerable reservoirs for coronaviruses (CoVs), serve as natural hosts for several highly pathogenic CoVs, including SARS-CoV and SARS-CoV-2. Investigating the bat CoV community provides insights into the origin for highly pathogenic CoVs and highlights bat CoVs with potential spillover risks. This study probes the evolution, recombination, host range, geographical distribution, and cross-species transmission characteristics of bat CoVs across China and its associated CoVs in other regions. Through detailed research on 13,064 bat samples from 14 provinces of China, 1141 CoV strains are found across 10 subgenera and one unclassified Alpha-CoV, generating 399 complete genome sequences. Within bat CoVs, 11 new CoV species are identified and 425 recombination events are detected. Bats in southern China, particularly in Yunnan province, exhibit a pronounced diversity of CoVs. Limited sampling and low detection rates exist for CoVs in Myotacovirus, Nyctacovirus, Hibecovirus, Nobecovirus in China. The genus Myotis is highlighted as a potential ancestral host for Alpha-CoV, with the genus Hipposideros suggested as a likely progenitor host for bat-associated Beta-CoV, indicating the complexity of cross-species transmission dynamics. Through the comprehensive analysis, this study enriches the understanding of bat CoVs and offers a valuable resource for future research.

Suggested Citation

  • Yelin Han & Panpan Xu & Yuyang Wang & Wenliang Zhao & Junpeng Zhang & Shuyi Zhang & Jianwei Wang & Qi Jin & Zhiqiang Wu, 2023. "Panoramic analysis of coronaviruses carried by representative bat species in Southern China to better understand the coronavirus sphere," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41264-z
    DOI: 10.1038/s41467-023-41264-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41264-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41264-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel H Huson & Sina Beier & Isabell Flade & Anna Górska & Mohamed El-Hadidi & Suparna Mitra & Hans-Joachim Ruscheweyh & Rewati Tappu, 2016. "MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-12, June.
    2. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    3. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    4. Xing-Yi Ge & Jia-Lu Li & Xing-Lou Yang & Aleksei A. Chmura & Guangjian Zhu & Jonathan H. Epstein & Jonna K. Mazet & Ben Hu & Wei Zhang & Cheng Peng & Yu-Ji Zhang & Chu-Ming Luo & Bing Tan & Ning Wang , 2013. "Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor," Nature, Nature, vol. 503(7477), pages 535-538, November.
    5. Peng Zhou & Hang Fan & Tian Lan & Xing-Lou Yang & Wei-Feng Shi & Wei Zhang & Yan Zhu & Ya-Wei Zhang & Qing-Mei Xie & Shailendra Mani & Xiao-Shuang Zheng & Bei Li & Jin-Man Li & Hua Guo & Guang-Qian Pe, 2018. "Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin," Nature, Nature, vol. 556(7700), pages 255-258, April.
    6. Jinfang Yu & Shuyuan Qiao & Runyu Guo & Xinquan Wang, 2020. "Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    7. Sarah Temmam & Khamsing Vongphayloth & Eduard Baquero & Sandie Munier & Massimiliano Bonomi & Béatrice Regnault & Bounsavane Douangboubpha & Yasaman Karami & Delphine Chrétien & Daosavanh Sanamxay & V, 2022. "Bat coronaviruses related to SARS-CoV-2 and infectious for human cells," Nature, Nature, vol. 604(7905), pages 330-336, April.
    8. Alice Latinne & Ben Hu & Kevin J. Olival & Guangjian Zhu & Libiao Zhang & Hongying Li & Aleksei A. Chmura & Hume E. Field & Carlos Zambrana-Torrelio & Jonathan H. Epstein & Bei Li & Wei Zhang & Lin-Fa, 2020. "Origin and cross-species transmission of bat coronaviruses in China," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    9. Sarah Temmam & Khamsing Vongphayloth & Eduard Baquero & Sandie Munier & Massimiliano Bonomi & Béatrice Regnault & Bounsavane Douangboubpha & Yasaman Karami & Delphine Chrétien & Daosavanh Sanamxay & V, 2022. "Author Correction: Bat coronaviruses related to SARS-CoV-2 and infectious for human cells," Nature, Nature, vol. 607(7920), pages 19-19, July.
    10. Smriti Mallapaty, 2021. "Closest known relatives of virus behind COVID-19 found in Laos," Nature, Nature, vol. 597(7878), pages 603-603, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Yuan-fei Pan & Li-fen Yang & Wei-hong Yang & Kexin Lv & Chu-ming Luo & Juan Wang & Guo-peng Kuang & Wei-chen Wu & Qin-yu Gou & Gen-yang Xin & Bo Li & Huan-le Luo & Shoudeng Chen & Yue-long, 2023. "Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Cecilia A. Sánchez & Hongying Li & Kendra L. Phelps & Carlos Zambrana-Torrelio & Lin-Fa Wang & Peng Zhou & Zheng-Li Shi & Kevin J. Olival & Peter Daszak, 2022. "A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ho‐fung Hung, 2022. "The Virus, the Dollar, and the Global Order: The COVID‐19 Crisis in Comparative Perspective," Development and Change, International Institute of Social Studies, vol. 53(6), pages 1177-1199, November.
    4. Juan Liu & Fengfeng Mao & Jianhe Chen & Shuaiyao Lu & Yonghe Qi & Yinyan Sun & Linqiang Fang & Man Lung Yeung & Chunmei Liu & Guimei Yu & Guangyu Li & Ximing Liu & Yuansheng Yao & Panpan Huang & Dongx, 2023. "An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Catanzaro, Daniele & Frohn, Martin & Gascuel, Olivier & Pesenti, Raffaele, 2021. "A Tutorial on the Balanced Minimum Evolution Problem," LIDAM Discussion Papers CORE 20210, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Peter J. Halfmann & Kathryn Loeffler & Augustine Duffy & Makoto Kuroda & Jie E. Yang & Elizabeth R. Wright & Yoshihiro Kawaoka & Ravi S. Kane, 2024. "Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Marziah Hashimi & T. Andrew Sebrell & Jodi F. Hedges & Deann Snyder & Katrina N. Lyon & Stephanie D. Byrum & Samuel G. Mackintosh & Dan Crowley & Michelle D. Cherne & David Skwarchuk & Amanda Robison , 2023. "Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Renata L. Muylaert & David A. Wilkinson & Tigga Kingston & Paolo D’Odorico & Maria Cristina Rulli & Nikolas Galli & Reju Sam John & Phillip Alviola & David T. S. Hayman, 2023. "Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Catanzaro, Daniele & Frohn, Martin & Gascuel, Olivier & Pesenti, Raffaele, 2022. "A tutorial on the balanced minimum evolution problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 1-19.
    10. Shahadat Uddin & Arif Khan & Haohui Lu & Fangyu Zhou & Shakir Karim, 2022. "Suburban Road Networks to Explore COVID-19 Vulnerability and Severity," IJERPH, MDPI, vol. 19(4), pages 1-9, February.
    11. Kirsten R.C. Hensgens & Inge H.T. van Rensen & Anita W. Lekx & Frits H.M. van Osch & Lieve H.H. Knarren & Caroline E. Wyers & Joop P. van den Bergh & Dennis G. Barten, 2021. "Sort and Sieve: Pre-Triage Screening of Patients with Suspected COVID-19 in the Emergency Department," IJERPH, MDPI, vol. 18(17), pages 1-11, September.
    12. Quan-Hoang Vuong & Tam-Tri Le & Viet-Phuong La & Huyen Thanh Thanh Nguyen & Manh-Toan Ho & Quy Khuc & Minh-Hoang Nguyen, 2022. "Covid-19 vaccines production and societal immunization under the serendipity-mindsponge-3D knowledge management theory and conceptual framework," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    13. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Graziella Orrù & Ciro Conversano & Eleonora Malloggi & Francesca Francesconi & Rebecca Ciacchini & Angelo Gemignani, 2020. "Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    15. Gleidson Sobreira Leite & Adriano Bessa Albuquerque & Plácido Rogerio Pinheiro, 2021. "Applications of Technological Solutions in Primary Ways of Preventing Transmission of Respiratory Infectious Diseases—A Systematic Literature Review," IJERPH, MDPI, vol. 18(20), pages 1-50, October.
    16. Britton Boras & Rhys M. Jones & Brandon J. Anson & Dan Arenson & Lisa Aschenbrenner & Malina A. Bakowski & Nathan Beutler & Joseph Binder & Emily Chen & Heather Eng & Holly Hammond & Jennifer Hammond , 2021. "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    17. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    18. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    19. Fabiana Fiasca & Mauro Minelli & Dominga Maio & Martina Minelli & Ilaria Vergallo & Stefano Necozione & Antonella Mattei, 2020. "Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO 2 : A Nationwide Observational Study in Italy," IJERPH, MDPI, vol. 17(24), pages 1-10, December.
    20. Małgorzata Dudzińska & Marta Gwiaździńska-Goraj & Aleksandra Jezierska-Thöle, 2022. "Social Factors as Major Determinants of Rural Development Variation for Predicting Epidemic Vulnerability: A Lesson for the Future," IJERPH, MDPI, vol. 19(21), pages 1-24, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41264-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.