IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40382-y.html
   My bibliography  Save this article

Superscattering emerging from the physics of bound states in the continuum

Author

Listed:
  • Adrià Canós Valero

    (University of Graz, and NAWI Graz
    ITMO University)

  • Hadi K. Shamkhi

    (ITMO University
    Agency for Science, Technology and Research)

  • Anton S. Kupriianov

    (Jilin University)

  • Thomas Weiss

    (University of Graz, and NAWI Graz)

  • Alexander A. Pavlov

    (Institute of Nanotechnology of Microelectronics)

  • Dmitrii Redka

    (Electrotechnical University LETI)

  • Vjaceslavs Bobrovs

    (Riga Technical University, Institute of Telecommunications)

  • Yuri Kivshar

    (Australian National University)

  • Alexander S. Shalin

    (Moscow Institute of Physics and Technology
    MSU, Faculty of Physics)

Abstract

We study the Mie-like scattering from an open subwavelength resonator made of a high-index dielectric material, when its parameters are tuned to the regime of interfering resonances. We uncover a novel mechanism of superscattering, closely linked to strong coupling of the resonant modes and described by the physics of bound states in the continuum (BICs). We demonstrate that the enhanced scattering occurs due to constructive interference described by the Friedrich-Wintgen mechanism of interfering resonances, allowing to push the scattering cross section of a multipole resonance beyond the currently established limit. We develop a general non-Hermitian model to describe interfering resonances of the quasi-normal modes, and study subwavelength dielectric nonspherical resonators exhibiting avoided crossing resonances associated with quasi-BIC states. We confirm our theoretical findings by a scattering experiment conducted in the microwave frequency range. Our results reveal a new strategy to boost scattering from non-Hermitian systems, suggesting important implications for metadevices.

Suggested Citation

  • Adrià Canós Valero & Hadi K. Shamkhi & Anton S. Kupriianov & Thomas Weiss & Alexander A. Pavlov & Dmitrii Redka & Vjaceslavs Bobrovs & Yuri Kivshar & Alexander S. Shalin, 2023. "Superscattering emerging from the physics of bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40382-y
    DOI: 10.1038/s41467-023-40382-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40382-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40382-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 548(7666), pages 187-191, August.
    2. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Erratum: Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 551(7682), pages 658-658, November.
    3. Chao Qian & Yi Yang & Yifei Hua & Chan Wang & Xiao Lin & Tong Cai & Dexin Ye & Erping Li & Ido Kaminer & Hongsheng Chen, 2022. "Breaking the fundamental scattering limit with gain metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Juan S. Totero Gongora & Andrey E. Miroshnichenko & Yuri S. Kivshar & Andrea Fratalocchi, 2017. "Anapole nanolasers for mode-locking and ultrafast pulse generation," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    5. S. B. Wang & C. T. Chan, 2014. "Lateral optical force on chiral particles near a surface," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Djorwé, P. & Alphonse, H. & Abbagari, S. & Doka, S.Y. & Engo, S.G. Nana, 2023. "Synthetic magnetism for solitons in optomechanical array," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Arunn Suntharalingam & Lucas Fernández-Alcázar & Rodion Kononchuk & Tsampikos Kottos, 2023. "Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Chen, Lei & Huang, Feifan & Wang, Hongteng & Huang, Linwei & Huang, Junhua & Liu, Gui-Shi & Chen, Yaofei & Luo, Yunhan & Chen, Zhe, 2022. "Non-Hermitian-enhanced topological protection of chaotic dynamics in one-dimensional optomechanics lattice," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Yijie Shen & Zhensong Wan & Xing Fu & Mali Gong & Xilin Yang & Ruoyang Qi & Mali Gong, 2018. "Recent Advances on Tunable Vortex Beam Devices for Biomedical Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 9(3), pages 7134-7138, September.
    15. Shubo Wang & Guanqing Zhang & Xulong Wang & Qing Tong & Jensen Li & Guancong Ma, 2021. "Spin-orbit interactions of transverse sound," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Fan Nan & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Jack J. Kingsley-Smith & Jack Ng & Baoli Yao & Zijie Yan & Xiaohao Xu, 2023. "Creating tunable lateral optical forces through multipolar interplay in single nanowires," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40382-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.