IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62573-5.html
   My bibliography  Save this article

Quantum tomography of a third-order exceptional point in a dissipative trapped ion

Author

Listed:
  • Y.-Y. Chen

    (Tsinghua University)

  • K. Li

    (Tsinghua University
    RIKEN Center for Emergent Matter Science (CEMS))

  • L. Zhang

    (Tsinghua University)

  • Y.-K. Wu

    (Tsinghua University
    Hefei National Laboratory)

  • J.-Y. Ma

    (HYQ Co.)

  • H.-X. Yang

    (HYQ Co.)

  • C. Zhang

    (HYQ Co.)

  • B.-X. Qi

    (Tsinghua University)

  • Z.-C. Zhou

    (Tsinghua University
    Hefei National Laboratory)

  • P.-Y. Hou

    (Tsinghua University
    Hefei National Laboratory)

  • Y. Xu

    (Tsinghua University
    Hefei National Laboratory)

  • L.-M. Duan

    (Tsinghua University
    Hefei National Laboratory)

Abstract

Hermiticity in quantum mechanics ensures the reality of energies, while parity-time symmetry offers an alternative route. Interestingly, in a three-level system, parity-time symmetry-breaking can lead to third-order exceptional points with distinctive topological properties. Experimentally implementing this in open quantum systems requires two well-controlled loss channels, resulting in dynamics that challenges a pure non-Hermitian description. Here we address the challenge by employing two approaches to eliminate the effects of quantum jump terms, ensuring pure non-Hermitian dynamics in a dissipative trapped ion. Based on this, we experimentally observe a parity-time symmetry-breaking-induced third-order exceptional point through non-Hermitian absorption spectroscopy. Quantum state tomography further demonstrates the coalescence of three eigenstates into a single eigenstate at the exceptional point. Finally, we identify an intrinsic third-order Liouvillian exceptional point via quench dynamics. Our experiments can be extended to observe other non-Hermitian phenomena involving multiple dissipative levels and potentially find applications in quantum information technology.

Suggested Citation

  • Y.-Y. Chen & K. Li & L. Zhang & Y.-K. Wu & J.-Y. Ma & H.-X. Yang & C. Zhang & B.-X. Qi & Z.-C. Zhou & P.-Y. Hou & Y. Xu & L.-M. Duan, 2025. "Quantum tomography of a third-order exceptional point in a dissipative trapped ion," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62573-5
    DOI: 10.1038/s41467-025-62573-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62573-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62573-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 548(7666), pages 187-191, August.
    2. J.-W. Zhang & J.-Q. Zhang & G.-Y. Ding & J.-C. Li & J.-T. Bu & B. Wang & L.-L. Yan & S.-L. Su & L. Chen & F. Nori & Ş. K. Özdemir & F. Zhou & H. Jing & M. Feng, 2022. "Dynamical control of quantum heat engines using exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Weijian Chen & Şahin Kaya Özdemir & Guangming Zhao & Jan Wiersig & Lan Yang, 2017. "Exceptional points enhance sensing in an optical microcavity," Nature, Nature, vol. 548(7666), pages 192-196, August.
    4. Jiaming Li & Andrew K. Harter & Ji Liu & Leonardo de Melo & Yogesh N. Joglekar & Le Luo, 2019. "Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Bo Zhen & Chia Wei Hsu & Yuichi Igarashi & Ling Lu & Ido Kaminer & Adi Pick & Song-Liang Chua & John D. Joannopoulos & Marin Soljačić, 2015. "Spawning rings of exceptional points out of Dirac cones," Nature, Nature, vol. 525(7569), pages 354-358, September.
    6. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Erratum: Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 551(7682), pages 658-658, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Pengtao Song & Xinhui Ruan & Haijin Ding & Shengyong Li & Ming Chen & Ran Huang & Le-Man Kuang & Qianchuan Zhao & Jaw-Shen Tsai & Hui Jing & Lan Yang & Franco Nori & Dongning Zheng & Yu-xi Liu & Jing , 2024. "Experimental realization of on-chip few-photon control around exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Djorwé, P. & Alphonse, H. & Abbagari, S. & Doka, S.Y. & Engo, S.G. Nana, 2023. "Synthetic magnetism for solitons in optomechanical array," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    6. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Arunn Suntharalingam & Lucas Fernández-Alcázar & Rodion Kononchuk & Tsampikos Kottos, 2023. "Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Jhen-Dong Lin & Po-Chen Kuo & Neill Lambert & Adam Miranowicz & Franco Nori & Yueh-Nan Chen, 2025. "Non-Markovian quantum exceptional points," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    10. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Jie Zhang & Gang Xia & Chun-Wang Wu & Ting Chen & Qian Zhang & Yi Xie & Wen-Bo Su & Wei Wu & Cheng-Wei Qiu & Ping-Xing Chen & Weibin Li & Hui Jing & Yan-Li Zhou, 2025. "Observation of quantum strong Mpemba effect," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    12. Xingwei Gao & Hao He & Scott Sobolewski & Alexander Cerjan & Chia Wei Hsu, 2024. "Dynamic gain and frequency comb formation in exceptional-point lasers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Wenzheng Zhao & Yeang Zhang & Zixuan Gao & Delong Peng & Jun-long Kou & Yan-qing Lu & Ramy El-Ganainy & Şahin K. Özdemir & Qi Zhong, 2024. "Exceptional points induced by unidirectional coupling in electronic circuits," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Yicheng Zhu & Jiankun Hou & Qi Geng & Boyi Xue & Yuping Chen & Xianfeng Chen & Li Ge & Wenjie Wan, 2024. "Storing light near an exceptional point," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Dong-Yan Chen & Lei Dong & Qing-An Huang, 2024. "Inductor-capacitor passive wireless sensors using nonlinear parity-time symmetric configurations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Weijie Liu & Quancheng Liu & Xiang Ni & Yuechen Jia & Klaus Ziegler & Andrea Alù & Feng Chen, 2024. "Floquet parity-time symmetry in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Chenwei Lv & Ren Zhang & Zhengzheng Zhai & Qi Zhou, 2022. "Curving the space by non-Hermiticity," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    20. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62573-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.