IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4307.html
   My bibliography  Save this article

Lateral optical force on chiral particles near a surface

Author

Listed:
  • S. B. Wang

    (The Hong Kong University of Science and Technology, Clear Water Bay)

  • C. T. Chan

    (The Hong Kong University of Science and Technology, Clear Water Bay)

Abstract

Light can exert radiation pressure on any object it encounters and that resulting optical force can be used to manipulate particles. It is commonly assumed that light should move a particle forward and indeed an incident plane wave with a photon momentum ħ k can only push any particle, independent of its properties, in the direction of k. Here we demonstrate, using full-wave simulations, that an anomalous lateral force can be induced in a direction perpendicular to that of the incident photon momentum if a chiral particle is placed above a substrate that does not break any left–right symmetry. Analytical theory shows that the lateral force emerges from the coupling between structural chirality (the handedness of the chiral particle) and the light reflected from the substrate surface. Such coupling induces a sideway force that pushes chiral particles with opposite handedness in opposite directions.

Suggested Citation

  • S. B. Wang & C. T. Chan, 2014. "Lateral optical force on chiral particles near a surface," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4307
    DOI: 10.1038/ncomms4307
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4307
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrià Canós Valero & Hadi K. Shamkhi & Anton S. Kupriianov & Thomas Weiss & Alexander A. Pavlov & Dmitrii Redka & Vjaceslavs Bobrovs & Yuri Kivshar & Alexander S. Shalin, 2023. "Superscattering emerging from the physics of bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Fan Nan & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Jack J. Kingsley-Smith & Jack Ng & Baoli Yao & Zijie Yan & Xiaohao Xu, 2023. "Creating tunable lateral optical forces through multipolar interplay in single nanowires," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shubo Wang & Guanqing Zhang & Xulong Wang & Qing Tong & Jensen Li & Guancong Ma, 2021. "Spin-orbit interactions of transverse sound," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Yijie Shen & Zhensong Wan & Xing Fu & Mali Gong & Xilin Yang & Ruoyang Qi & Mali Gong, 2018. "Recent Advances on Tunable Vortex Beam Devices for Biomedical Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 9(3), pages 7134-7138, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.