IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39857-9.html
   My bibliography  Save this article

Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males

Author

Listed:
  • Hadi Abou-El-Hassan

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Rafael M. Rezende

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Saef Izzy

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Galina Gabriely

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Taha Yahya

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Bruna K. Tatematsu

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Karl J. Habashy

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Juliana R. Lopes

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Gislane L. V. Oliveira

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Amir-Hadi Maghzi

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Zhuoran Yin

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Laura M. Cox

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Rajesh Krishnan

    (Brigham & Women’s Hospital, Harvard Medical School)

  • Oleg Butovsky

    (Brigham & Women’s Hospital, Harvard Medical School
    Brigham and Women’s Hospital, Harvard Medical School)

  • Howard L. Weiner

    (Brigham & Women’s Hospital, Harvard Medical School)

Abstract

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ−/− mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-β that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.

Suggested Citation

  • Hadi Abou-El-Hassan & Rafael M. Rezende & Saef Izzy & Galina Gabriely & Taha Yahya & Bruna K. Tatematsu & Karl J. Habashy & Juliana R. Lopes & Gislane L. V. Oliveira & Amir-Hadi Maghzi & Zhuoran Yin &, 2023. "Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39857-9
    DOI: 10.1038/s41467-023-39857-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39857-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39857-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Douglas Arneson & Guanglin Zhang & Zhe Ying & Yumei Zhuang & Hyae Ran Byun & In Sook Ahn & Fernando Gomez-Pinilla & Xia Yang, 2018. "Single cell molecular alterations reveal target cells and pathways of concussive brain injury," Nature Communications, Nature, vol. 9(1), pages 1-18, December.
    2. Ashley C. Bolte & Arun B. Dutta & Mariah E. Hurt & Igor Smirnov & Michael A. Kovacs & Celia A. McKee & Hannah E. Ennerfelt & Daniel Shapiro & Bao H. Nguyen & Elizabeth L. Frost & Catherine R. Lammert , 2020. "Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    3. Antoine Louveau & Igor Smirnov & Timothy J. Keyes & Jacob D. Eccles & Sherin J. Rouhani & J. David Peske & Noel C. Derecki & David Castle & James W. Mandell & Kevin S. Lee & Tajie H. Harris & Jonathan, 2015. "Structural and functional features of central nervous system lymphatic vessels," Nature, Nature, vol. 523(7560), pages 337-341, July.
    4. Rafael M. Rezende & Andre P. da Cunha & Chantal Kuhn & Stephen Rubino & Hanane M’Hamdi & Galina Gabriely & Tyler Vandeventer & Shirong Liu & Ron Cialic & Natalia Pinheiro-Rosa & Rafael P. Oliveira & J, 2015. "Identification and characterization of latency-associated peptide-expressing γδ T cells," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Wang & Congcong Yan & Xi Li & Tianhao Yang & Shengnan Wu & Qian Liu & Qingming Luo & Feifan Zhou, 2024. "Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Dongyu Li & Shaojun Liu & Tingting Yu & Zhang Liu & Silin Sun & Denis Bragin & Alexander Shirokov & Nikita Navolokin & Olga Bragina & Zhengwu Hu & Jürgen Kurths & Ivan Fedosov & Inna Blokhina & Alexan, 2023. "Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Weiping Dai & Mengqian Yang & Pei Xia & Chuan Xiao & Shuying Huang & Zhan Zhang & Xin Cheng & Wenchang Li & Jian Jin & Jingyun Zhang & Binghuo Wu & Yingying Zhang & Pei-hui Wu & Yangyang Lin & Wen Wu , 2022. "A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    4. Per Kristian Eide & Aslan Lashkarivand & Are Pripp & Lars Magnus Valnes & Markus Herberg Hovd & Geir Ringstad & Kaj Blennow & Henrik Zetterberg, 2023. "Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Carolin Beuker & David Schafflick & Jan-Kolja Strecker & Michael Heming & Xiaolin Li & Jolien Wolbert & Antje Schmidt-Pogoda & Christian Thomas & Tanja Kuhlmann & Irene Aranda-Pardos & Noelia A-Gonzal, 2022. "Stroke induces disease-specific myeloid cells in the brain parenchyma and pia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Nicola A. Kearns & Artemis Iatrou & Daniel J. Flood & Sashini Tissera & Zachary M. Mullaney & Jishu Xu & Chris Gaiteri & David A. Bennett & Yanling Wang, 2023. "Dissecting the human leptomeninges at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Rosa M S Visscher & Nina Feddermann-Demont & Fausto Romano & Dominik Straumann & Giovanni Bertolini, 2019. "Artificial intelligence for understanding concussion: Retrospective cluster analysis on the balance and vestibular diagnostic data of concussion patients," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-15, April.
    8. Josephine A. Mapunda & Javier Pareja & Mykhailo Vladymyrov & Elisa Bouillet & Pauline Hélie & Petr Pleskač & Sara Barcos & Johanna Andrae & Dietmar Vestweber & Donald M. McDonald & Christer Betsholtz , 2023. "VE-cadherin in arachnoid and pia mater cells serves as a suitable landmark for in vivo imaging of CNS immune surveillance and inflammation," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    9. Geir Ringstad & Per Kristian Eide, 2023. "The pitfalls of interpreting hyperintense FLAIR signal as lymph outside the human brain," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    10. Anastasia Mozokhina & Rostislav Savinkov, 2020. "Mathematical Modelling of the Structure and Function of the Lymphatic System," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    11. Shinji Naganawa & Yutaka Kato & Tadao Yoshida & Michihiko Sone, 2023. "Fluid signal suppression characteristics of 3D-FLAIR with a T2 selective inversion pulse in the skull base," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    12. Shelei Pan & Peter H. Yang & Dakota DeFreitas & Sruthi Ramagiri & Peter O. Bayguinov & Carl D. Hacker & Abraham Z. Snyder & Jackson Wilborn & Hengbo Huang & Gretchen M. Koller & Dhvanii K. Raval & Gra, 2023. "Gold nanoparticle-enhanced X-ray microtomography of the rodent reveals region-specific cerebrospinal fluid circulation in the brain," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Per Kristian Eide & Geir Ringstad, 2024. "Functional analysis of the human perivascular subarachnoid space," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Laura Bojarskaite & Alexandra Vallet & Daniel M. Bjørnstad & Kristin M. Gullestad Binder & Céline Cunen & Kjell Heuser & Miroslav Kuchta & Kent-Andre Mardal & Rune Enger, 2023. "Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39857-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.