IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28593-1.html
   My bibliography  Save this article

Stroke induces disease-specific myeloid cells in the brain parenchyma and pia

Author

Listed:
  • Carolin Beuker

    (University Hospital)

  • David Schafflick

    (University Hospital)

  • Jan-Kolja Strecker

    (University Hospital)

  • Michael Heming

    (University Hospital)

  • Xiaolin Li

    (University Hospital)

  • Jolien Wolbert

    (University Hospital)

  • Antje Schmidt-Pogoda

    (University Hospital)

  • Christian Thomas

    (University of Münster)

  • Tanja Kuhlmann

    (University of Münster)

  • Irene Aranda-Pardos

    (Westfälische Wilhelms-University)

  • Noelia A-Gonzalez

    (Westfälische Wilhelms-University)

  • Praveen Ashok Kumar

    (Jena University Hospital)

  • Yves Werner

    (Jena University Hospital)

  • Ertugrul Kilic

    (Istanbul Medipol University Regenerative and Restorative Medical Research Center)

  • Dirk M. Hermann

    (University Hospital Essen)

  • Heinz Wiendl

    (University Hospital)

  • Ralf Stumm

    (Jena University Hospital)

  • Gerd Meyer zu Hörste

    (University Hospital)

  • Jens Minnerup

    (University Hospital
    Interdisciplinary Center for Clinical Research (IZKF))

Abstract

Inflammation triggers secondary brain damage after stroke. The meninges and other CNS border compartments serve as invasion sites for leukocyte influx into the brain thus promoting tissue damage after stroke. However, the post-ischemic immune response of border compartments compared to brain parenchyma remains poorly characterized. Here, we deeply characterize tissue-resident leukocytes in meninges and brain parenchyma and discover that leukocytes respond differently to stroke depending on their site of residence. We thereby discover a unique phenotype of myeloid cells exclusive to the brain after stroke. These stroke-associated myeloid cells partially resemble neurodegenerative disease-associated microglia. They are mainly of resident microglial origin, partially conserved in humans and exhibit a lipid-phagocytosing phenotype. Blocking markers specific for these cells partially ameliorates stroke outcome thus providing a potential therapeutic target. The injury-response of myeloid cells in the CNS is thus compartmentalized, adjusted to the type of injury and may represent a therapeutic target.

Suggested Citation

  • Carolin Beuker & David Schafflick & Jan-Kolja Strecker & Michael Heming & Xiaolin Li & Jolien Wolbert & Antje Schmidt-Pogoda & Christian Thomas & Tanja Kuhlmann & Irene Aranda-Pardos & Noelia A-Gonzal, 2022. "Stroke induces disease-specific myeloid cells in the brain parenchyma and pia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28593-1
    DOI: 10.1038/s41467-022-28593-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28593-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28593-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antoine Louveau & Igor Smirnov & Timothy J. Keyes & Jacob D. Eccles & Sherin J. Rouhani & J. David Peske & Noel C. Derecki & David Castle & James W. Mandell & Kevin S. Lee & Tajie H. Harris & Jonathan, 2015. "Structural and functional features of central nervous system lymphatic vessels," Nature, Nature, vol. 523(7560), pages 337-341, July.
    2. Sandro Da Mesquita & Antoine Louveau & Andrea Vaccari & Igor Smirnov & R. Chase Cornelison & Kathryn M. Kingsmore & Christian Contarino & Suna Onengut-Gumuscu & Emily Farber & Daniel Raper & Kenneth E, 2018. "Publisher Correction: Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease," Nature, Nature, vol. 564(7734), pages 7-7, December.
    3. Sandro Mesquita & Antoine Louveau & Andrea Vaccari & Igor Smirnov & R. Chase Cornelison & Kathryn M. Kingsmore & Christian Contarino & Suna Onengut-Gumuscu & Emily Farber & Daniel Raper & Kenneth E. V, 2018. "Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease," Nature, Nature, vol. 560(7717), pages 185-191, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Wang & Congcong Yan & Xi Li & Tianhao Yang & Shengnan Wu & Qian Liu & Qingming Luo & Feifan Zhou, 2024. "Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Weiping Dai & Mengqian Yang & Pei Xia & Chuan Xiao & Shuying Huang & Zhan Zhang & Xin Cheng & Wenchang Li & Jian Jin & Jingyun Zhang & Binghuo Wu & Yingying Zhang & Pei-hui Wu & Yangyang Lin & Wen Wu , 2022. "A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Per Kristian Eide & Aslan Lashkarivand & Are Pripp & Lars Magnus Valnes & Markus Herberg Hovd & Geir Ringstad & Kaj Blennow & Henrik Zetterberg, 2023. "Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Nicola A. Kearns & Artemis Iatrou & Daniel J. Flood & Sashini Tissera & Zachary M. Mullaney & Jishu Xu & Chris Gaiteri & David A. Bennett & Yanling Wang, 2023. "Dissecting the human leptomeninges at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Stefano Suzzi & Tommaso Croese & Adi Ravid & Or Gold & Abbe R. Clark & Sedi Medina & Daniel Kitsberg & Miriam Adam & Katherine A. Vernon & Eva Kohnert & Inbar Shapira & Sergey Malitsky & Maxim Itkin &, 2023. "N-acetylneuraminic acid links immune exhaustion and accelerated memory deficit in diet-induced obese Alzheimer’s disease mouse model," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Nieves Montenegro-Navarro & Claudia García-Báez & Melissa García-Caballero, 2023. "Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Geir Ringstad & Per Kristian Eide, 2023. "The pitfalls of interpreting hyperintense FLAIR signal as lymph outside the human brain," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    8. Dongyu Li & Shaojun Liu & Tingting Yu & Zhang Liu & Silin Sun & Denis Bragin & Alexander Shirokov & Nikita Navolokin & Olga Bragina & Zhengwu Hu & Jürgen Kurths & Ivan Fedosov & Inna Blokhina & Alexan, 2023. "Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Per Kristian Eide & Geir Ringstad, 2024. "Functional analysis of the human perivascular subarachnoid space," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Yogi H. Hendlin, 2022. "Plant Philosophy and Interpretation: Making Sense of Contemporary Plant Intelligence Debates," Environmental Values, , vol. 31(3), pages 253-276, June.
    11. Hadi Abou-El-Hassan & Rafael M. Rezende & Saef Izzy & Galina Gabriely & Taha Yahya & Bruna K. Tatematsu & Karl J. Habashy & Juliana R. Lopes & Gislane L. V. Oliveira & Amir-Hadi Maghzi & Zhuoran Yin &, 2023. "Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Josephine A. Mapunda & Javier Pareja & Mykhailo Vladymyrov & Elisa Bouillet & Pauline Hélie & Petr Pleskač & Sara Barcos & Johanna Andrae & Dietmar Vestweber & Donald M. McDonald & Christer Betsholtz , 2023. "VE-cadherin in arachnoid and pia mater cells serves as a suitable landmark for in vivo imaging of CNS immune surveillance and inflammation," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    13. Anastasia Mozokhina & Rostislav Savinkov, 2020. "Mathematical Modelling of the Structure and Function of the Lymphatic System," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    14. Shinji Naganawa & Yutaka Kato & Tadao Yoshida & Michihiko Sone, 2023. "Fluid signal suppression characteristics of 3D-FLAIR with a T2 selective inversion pulse in the skull base," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    15. Shelei Pan & Peter H. Yang & Dakota DeFreitas & Sruthi Ramagiri & Peter O. Bayguinov & Carl D. Hacker & Abraham Z. Snyder & Jackson Wilborn & Hengbo Huang & Gretchen M. Koller & Dhvanii K. Raval & Gra, 2023. "Gold nanoparticle-enhanced X-ray microtomography of the rodent reveals region-specific cerebrospinal fluid circulation in the brain," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Laura Bojarskaite & Alexandra Vallet & Daniel M. Bjørnstad & Kristin M. Gullestad Binder & Céline Cunen & Kjell Heuser & Miroslav Kuchta & Kent-Andre Mardal & Rune Enger, 2023. "Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28593-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.