IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38861-3.html
   My bibliography  Save this article

Topological quadratic-node semimetal in a photonic microring lattice

Author

Listed:
  • Zihe Gao

    (University of Pennsylvania)

  • Haoqi Zhao

    (University of Pennsylvania)

  • Tianwei Wu

    (University of Pennsylvania)

  • Xilin Feng

    (University of Pennsylvania)

  • Zhifeng Zhang

    (University of Pennsylvania
    University of Pennsylvania)

  • Xingdu Qiao

    (University of Pennsylvania)

  • Ching-Kai Chiu

    (RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako)

  • Liang Feng

    (University of Pennsylvania
    University of Pennsylvania)

Abstract

Graphene, with its two linearly dispersing Dirac points with opposite windings, is the minimal topological nodal configuration in the hexagonal Brillouin zone. Topological semimetals with higher-order nodes beyond the Dirac points have recently attracted considerable interest due to their rich chiral physics and their potential for the design of next-generation integrated devices. Here we report the experimental realization of the topological semimetal with quadratic nodes in a photonic microring lattice. Our structure hosts a robust second-order node at the center of the Brillouin zone and two Dirac points at the Brillouin zone boundary—the second minimal configuration, next to graphene, that satisfies the Nielsen–Ninomiya theorem. The symmetry-protected quadratic nodal point, together with the Dirac points, leads to the coexistence of massive and massless components in a hybrid chiral particle. This gives rise to unique transport properties, which we demonstrate by directly imaging simultaneous Klein and anti-Klein tunnelling in the microring lattice.

Suggested Citation

  • Zihe Gao & Haoqi Zhao & Tianwei Wu & Xilin Feng & Zhifeng Zhang & Xingdu Qiao & Ching-Kai Chiu & Liang Feng, 2023. "Topological quadratic-node semimetal in a photonic microring lattice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38861-3
    DOI: 10.1038/s41467-023-38861-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38861-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38861-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    2. Zengkai Shao & Jiangbo Zhu & Yujie Chen & Yanfeng Zhang & Siyuan Yu, 2018. "Spin-orbit interaction of light induced by transverse spin angular momentum engineering," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    4. Qiaolu Chen & Fujia Chen & Yuang Pan & Chaoxi Cui & Qinghui Yan & Li Zhang & Zhen Gao & Shengyuan A. Yang & Zhi-Ming Yu & Hongsheng Chen & Baile Zhang & Yihao Yang, 2022. "Discovery of a maximally charged Weyl point," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    5. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    8. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    15. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    16. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    17. Ying Zhou & Hongqian Mu & Tongbiao Wang & Tianbao Yu & Qinghua Liao, 2022. "Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-10, November.
    18. Jonas B. Profe & Dante M. Kennes, 2022. "TU $$^2$$ 2 FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-13, March.
    19. Xuefei Liu & Zhaocai Zhang & Bing Lv & Zhao Ding & Zijiang Luo, 2021. "Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-7, January.
    20. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38861-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.