IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38580-9.html
   My bibliography  Save this article

Neural correlates of hierarchical predictive processes in autistic adults

Author

Listed:
  • Laurie-Anne Sapey-Triomphe

    (Leuven Brain Institute
    Leuven Autism Research (LAuRes))

  • Lauren Pattyn

    (Leuven Brain Institute)

  • Veith Weilnhammer

    (Charité-Universitätsmedizin Berlin
    Charité-Universitätsmedizin Berlin)

  • Philipp Sterzer

    (Charité-Universitätsmedizin Berlin
    Charité-Universitätsmedizin Berlin)

  • Johan Wagemans

    (Leuven Brain Institute
    Leuven Autism Research (LAuRes))

Abstract

Bayesian theories of autism spectrum disorders (ASD) suggest that atypical predictive mechanisms could underlie the autistic symptomatology, but little is known about their neural correlates. Twenty-six neurotypical (NT) and 26 autistic adults participated in an fMRI study where they performed an associative learning task in a volatile environment. By inverting a model of perceptual inference, we characterized the neural correlates of hierarchically structured predictions and prediction errors in ASD. Behaviorally, the predictive abilities of autistic adults were intact. Neurally, predictions were encoded hierarchically in both NT and ASD participants and biased their percepts. High-level predictions were following activity levels in a set of regions more closely in ASD than NT. Prediction errors yielded activation in shared regions in NT and ASD, but group differences were found in the anterior cingulate cortex and putamen. This study sheds light on the neural specificities of ASD that might underlie atypical predictive processing.

Suggested Citation

  • Laurie-Anne Sapey-Triomphe & Lauren Pattyn & Veith Weilnhammer & Philipp Sterzer & Johan Wagemans, 2023. "Neural correlates of hierarchical predictive processes in autistic adults," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38580-9
    DOI: 10.1038/s41467-023-38580-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38580-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38580-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Golia Shafiei & Ben D. Fulcher & Bradley Voytek & Theodore D. Satterthwaite & Sylvain Baillet & Bratislav Misic, 2023. "Neurophysiological signatures of cortical micro-architecture," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Andrew D. Grotzinger & Travis T. Mallard & Zhaowen Liu & Jakob Seidlitz & Tian Ge & Jordan W. Smoller, 2023. "Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Xiaolu Kong & Ru Kong & Csaba Orban & Peng Wang & Shaoshi Zhang & Kevin Anderson & Avram Holmes & John D. Murray & Gustavo Deco & Martijn Heuvel & B. T. Thomas Yeo, 2021. "Sensory-motor cortices shape functional connectivity dynamics in the human brain," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Justine Y. Hansen & Golia Shafiei & Jacob W. Vogel & Kelly Smart & Carrie E. Bearden & Martine Hoogman & Barbara Franke & Daan Rooij & Jan Buitelaar & Carrie R. McDonald & Sanjay M. Sisodiya & Lianne , 2022. "Local molecular and global connectomic contributions to cross-disorder cortical abnormalities," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Stuart Oldham & Gareth Ball, 2023. "A phylogenetically-conserved axis of thalamocortical connectivity in the human brain," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38580-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.