IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36648-0.html
   My bibliography  Save this article

Ongoing movement controls sensory integration in the dorsolateral striatum

Author

Listed:
  • Roberto de la Torre-Martinez

    (Karolinska Institutet)

  • Maya Ketzef

    (Karolinska Institutet)

  • Gilad Silberberg

    (Karolinska Institutet)

Abstract

The dorsolateral striatum (DLS) receives excitatory inputs from both sensory and motor cortical regions. In the neocortex, sensory responses are affected by motor activity, however, it is not known whether such sensorimotor interactions occur in the striatum and how they are shaped by dopamine. To determine the impact of motor activity on striatal sensory processing, we performed in vivo whole-cell recordings in the DLS of awake mice during the presentation of tactile stimuli. Striatal medium spiny neurons (MSNs) were activated by both whisker stimulation and spontaneous whisking, however, their responses to whisker deflection during ongoing whisking were attenuated. Dopamine depletion reduced the representation of whisking in direct-pathway MSNs, but not in those of the indirect-pathway. Furthermore, dopamine depletion impaired the discrimination between ipsilateral and contralateral sensory stimulation in both direct and indirect pathway MSNs. Our results show that whisking affects sensory responses in DLS and that striatal representation of both processes is dopamine- and cell type-dependent.

Suggested Citation

  • Roberto de la Torre-Martinez & Maya Ketzef & Gilad Silberberg, 2023. "Ongoing movement controls sensory integration in the dorsolateral striatum," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36648-0
    DOI: 10.1038/s41467-023-36648-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36648-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36648-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Petr Znamenskiy & Anthony M. Zador, 2013. "Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination," Nature, Nature, vol. 497(7450), pages 482-485, May.
    2. Nicholas N. Foster & Joshua Barry & Laura Korobkova & Luis Garcia & Lei Gao & Marlene Becerra & Yasmine Sherafat & Bo Peng & Xiangning Li & Jun-Hyeok Choi & Lin Gou & Brian Zingg & Sana Azam & Darrick, 2021. "The mouse cortico–basal ganglia–thalamic network," Nature, Nature, vol. 598(7879), pages 188-194, October.
    3. David M. Schneider & Anders Nelson & Richard Mooney, 2014. "A synaptic and circuit basis for corollary discharge in the auditory cortex," Nature, Nature, vol. 513(7517), pages 189-194, September.
    4. Jerry L. Chen & Stefano Carta & Joana Soldado-Magraner & Bernard L. Schneider & Fritjof Helmchen, 2013. "Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex," Nature, Nature, vol. 499(7458), pages 336-340, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Francisco García-Rosales & Luciana López-Jury & Eugenia González-Palomares & Johannes Wetekam & Yuranny Cabral-Calderín & Ava Kiai & Manfred Kössl & Julio C. Hechavarría, 2022. "Echolocation-related reversal of information flow in a cortical vocalization network," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Thomas Akam & Rui Costa & Peter Dayan, 2015. "Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-25, December.
    5. Bartul Mimica & Tuçe Tombaz & Claudia Battistin & Jingyi Guo Fuglstad & Benjamin A. Dunn & Jonathan R. Whitlock, 2023. "Behavioral decomposition reveals rich encoding structure employed across neocortex in rats," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Mitchell Clough & Ichun Anderson Chen & Seong-Wook Park & Allison M. Ahrens & Jeffrey N. Stirman & Spencer L. Smith & Jerry L. Chen, 2021. "Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Evan S. Schaffer & Neeli Mishra & Matthew R. Whiteway & Wenze Li & Michelle B. Vancura & Jason Freedman & Kripa B. Patel & Venkatakaushik Voleti & Liam Paninski & Elizabeth M. C. Hillman & L. F. Abbot, 2023. "The spatial and temporal structure of neural activity across the fly brain," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Tadaaki Nishioka & Suthinee Attachaipanich & Kosuke Hamaguchi & Michael Lazarus & Alban Kerchove d’Exaerde & Tom Macpherson & Takatoshi Hikida, 2023. "Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides inhibition-based choice behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Nihaad Paraouty & Justin D. Yao & Léo Varnet & Chi-Ning Chou & SueYeon Chung & Dan H. Sanes, 2023. "Sensory cortex plasticity supports auditory social learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Siva Venkadesh & Anthony Santarelli & Tyler Boesen & Hong-Wei Dong & Giorgio A. Ascoli, 2023. "Combinatorial quantification of distinct neural projections from retrograde tracing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Brian P. Rummell & Solmaz Bikas & Susanne S. Babl & Joseph A. Gogos & Torfi Sigurdsson, 2023. "Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Yanjie Wang & Zhaonan Chen & Guofen Ma & Lizhao Wang & Yanmei Liu & Meiling Qin & Xiang Fei & Yifan Wu & Min Xu & Siyu Zhang, 2023. "A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36648-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.