IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61792-0.html
   My bibliography  Save this article

A tactile discrimination task to study neuronal dynamics in freely-moving mice

Author

Listed:
  • Filippo Heimburg

    (Heidelberg University)

  • Nadin Mari Saluti

    (Heidelberg University)

  • Josephine Timm

    (Heidelberg University
    University of Bonn)

  • Avi Adlakha

    (Heidelberg University)

  • Maria Helena Bortolozzo-Gleich

    (Heidelberg University)

  • Jesús Martín-Cortecero

    (Heidelberg University)

  • Melina Castelanelli

    (Heidelberg University)

  • Matthias Klumpp

    (Heidelberg University)

  • Lee Embray

    (Heidelberg University)

  • Martin Both

    (Heidelberg University)

  • Thomas Kuner

    (Heidelberg University)

  • Alexander Groh

    (Heidelberg University)

Abstract

Sensory discrimination tasks are valuable tools to study neuronal mechanisms of perception and learning, yet most rodent paradigms rely on head fixation. Here, we present a whisker-dependent go/no-go discrimination task for freely moving mice, compatible with high-resolution electrophysiology and calcium imaging. Adult male mice rapidly learned to discriminate aperture widths while foraging on a linear platform, enabling investigations of tactile thresholds, rule reversals, and behavioral flexibility. Neural recordings revealed distributed tactile coding across the thalamocortical system, with units tuned to both sensory and motor features, including whisking, head angle, and spatial position. Aperture selectivity emerged in the barrel cortex during learning, and cortical lesions impaired performance, highlighting cortical involvement in learning and task execution. The setup is modular, automated, and supports simultaneous recordings and imaging aligned to naturalistic behavior. This platform provides a powerful tool to dissect sensory processing and learning in ethologically relevant conditions.

Suggested Citation

  • Filippo Heimburg & Nadin Mari Saluti & Josephine Timm & Avi Adlakha & Maria Helena Bortolozzo-Gleich & Jesús Martín-Cortecero & Melina Castelanelli & Matthias Klumpp & Lee Embray & Martin Both & Thoma, 2025. "A tactile discrimination task to study neuronal dynamics in freely-moving mice," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61792-0
    DOI: 10.1038/s41467-025-61792-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61792-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61792-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lars-Lennart Oettl & Max Scheller & Carla Filosa & Sebastian Wieland & Franziska Haag & Cathrin Loeb & Daniel Durstewitz & Roman Shusterman & Eleonora Russo & Wolfgang Kelsch, 2020. "Phasic dopamine reinforces distinct striatal stimulus encoding in the olfactory tubercle driving dopaminergic reward prediction," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Christina Mo & Claire McKinnon & S. Murray Sherman, 2024. "A transthalamic pathway crucial for perception," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Leopoldo Petreanu & Diego A. Gutnisky & Daniel Huber & Ning-long Xu & Dan H. O’Connor & Lin Tian & Loren Looger & Karel Svoboda, 2012. "Activity in motor–sensory projections reveals distributed coding in somatosensation," Nature, Nature, vol. 489(7415), pages 299-303, September.
    4. Matthias Klumpp & Lee Embray & Filippo Heimburg & Ana Luiza Alves Dias & Justus Simon & Alexander Groh & Andreas Draguhn & Martin Both, 2025. "Syntalos: a software for precise synchronization of simultaneous multi-modal data acquisition and closed-loop interventions," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    5. Ehud Ahissar & Ronen Sosnik & Sebastian Haidarliu, 2000. "Transformation from temporal to rate coding in a somatosensory thalamocortical pathway," Nature, Nature, vol. 406(6793), pages 302-306, July.
    6. Matthew E. Larkum & J. Julius Zhu & Bert Sakmann, 1999. "A new cellular mechanism for coupling inputs arriving at different cortical layers," Nature, Nature, vol. 398(6725), pages 338-341, March.
    7. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Jeffrey D. Moore & Martin Deschênes & Takahiro Furuta & Daniel Huber & Matthew C. Smear & Maxime Demers & David Kleinfeld, 2013. "Hierarchy of orofacial rhythms revealed through whisking and breathing," Nature, Nature, vol. 497(7448), pages 205-210, May.
    9. Daniel Huber & Leopoldo Petreanu & Nima Ghitani & Sachin Ranade & Tomáš Hromádka & Zach Mainen & Karel Svoboda, 2008. "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice," Nature, Nature, vol. 451(7174), pages 61-64, January.
    10. Ning-long Xu & Mark T. Harnett & Stephen R. Williams & Daniel Huber & Daniel H. O’Connor & Karel Svoboda & Jeffrey C. Magee, 2012. "Nonlinear dendritic integration of sensory and motor input during an active sensing task," Nature, Nature, vol. 492(7428), pages 247-251, December.
    11. Jerry L. Chen & Stefano Carta & Joana Soldado-Magraner & Bernard L. Schneider & Fritjof Helmchen, 2013. "Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex," Nature, Nature, vol. 499(7458), pages 336-340, July.
    12. Tess Baker Oram & Alon Tenzer & Inbar Saraf-Sinik & Ofer Yizhar & Ehud Ahissar, 2024. "Co-coding of head and whisker movements by both VPM and POm thalamic neurons," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Y. Kate Hong & Clay O. Lacefield & Chris C. Rodgers & Randy M. Bruno, 2018. "Sensation, movement and learning in the absence of barrel cortex," Nature, Nature, vol. 561(7724), pages 542-546, September.
    14. Abhishek Banerjee & Giuseppe Parente & Jasper Teutsch & Christopher Lewis & Fabian F. Voigt & Fritjof Helmchen, 2020. "Value-guided remapping of sensory cortex by lateral orbitofrontal cortex," Nature, Nature, vol. 585(7824), pages 245-250, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Christina Mo & Claire McKinnon & S. Murray Sherman, 2024. "A transthalamic pathway crucial for perception," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    4. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Natalie L. Johnson & Anamaria Cotelo-Larrea & Lucas A. Stetzik & Umit M. Akkaya & Zihao Zhang & Marie A. Gadziola & Adrienn G. Varga & Minghong Ma & Daniel W. Wesson, 2025. "Dopaminergic signaling to ventral striatum neurons initiates sniffing behavior," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    7. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Pierre-Marie Gardères & Sébastien Gal & Charly Rousseau & Alexandre Mamane & Dan Alin Ganea & Florent Haiss, 2024. "Coexistence of state, choice, and sensory integration coding in barrel cortex LII/III," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Hammad F. Khan & Sayan Dutta & Alicia N. Scott & Shulan Xiao & Saumitra Yadav & Xiaoling Chen & Uma K. Aryal & Tamara L. Kinzer-Ursem & Jean-Christophe Rochet & Krishna Jayant, 2024. "Site-specific seeding of Lewy pathology induces distinct pre-motor cellular and dendritic vulnerabilities in the cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Mitchell Clough & Ichun Anderson Chen & Seong-Wook Park & Allison M. Ahrens & Jeffrey N. Stirman & Spencer L. Smith & Jerry L. Chen, 2021. "Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Jan C. Frankowski & Alexa Tierno & Shreya Pavani & Quincy Cao & David C. Lyon & Robert F. Hunt, 2022. "Brain-wide reconstruction of inhibitory circuits after traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Rebecca J. Rabinovich & Daniel D. Kato & Randy M. Bruno, 2022. "Learning enhances encoding of time and temporal surprise in mouse primary sensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Arjun A. Bhaskaran & Théo Gauvrit & Yukti Vyas & Guillaume Bony & Melanie Ginger & Andreas Frick, 2023. "Endogenous noise of neocortical neurons correlates with atypical sensory response variability in the Fmr1−/y mouse model of autism," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Federico Brandalise & Ronan Chéreau & I-Wen Chen & David Oorschot & Claudia Raig & Tanika Bawa & Nandkishor Mule & Stéphane Pagès & Foivos Markopoulos & Anthony Holtmaat, 2025. "Thalamocortical feedback selectively controls pyramidal neuron excitability," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    17. Elaida D. Dimwamwa & Aurélie Pala & Vivek Chundru & Nathaniel C. Wright & Garrett B. Stanley, 2024. "Dynamic corticothalamic modulation of the somatosensory thalamocortical circuit during wakefulness," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Giuseppe Chindemi & Marwan Abdellah & Oren Amsalem & Ruth Benavides-Piccione & Vincent Delattre & Michael Doron & András Ecker & Aurélien T. Jaquier & James King & Pramod Kumbhar & Caitlin Monney & Ro, 2022. "A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Yichen Zhang & Gan He & Lei Ma & Xiaofei Liu & J. J. Johannes Hjorth & Alexander Kozlov & Yutao He & Shenjian Zhang & Jeanette Hellgren Kotaleski & Yonghong Tian & Sten Grillner & Kai Du & Tiejun Huan, 2023. "A GPU-based computational framework that bridges neuron simulation and artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61792-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.