IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36619-5.html
   My bibliography  Save this article

A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials

Author

Listed:
  • Zijing Zhao

    (Peking University
    Peking University)

  • Zhi Fang

    (Peking University)

  • Xiaocang Han

    (Peking University)

  • Shiqi Yang

    (Peking University)

  • Cong Zhou

    (Xi’an Jiaotong University)

  • Yi Zeng

    (Peking University)

  • Biao Zhang

    (Peking University)

  • Wei Li

    (Peking University)

  • Zhan Wang

    (Chinese Academy of Sciences)

  • Ying Zhang

    (Chinese Academy of Sciences)

  • Jian Zhou

    (Xi’an Jiaotong University)

  • Jiadong Zhou

    (School of Physics, Beijing Institute of Technology)

  • Yu Ye

    (Peking University)

  • Xinmei Hou

    (University of Science and Technology Beijing)

  • Xiaoxu Zhao

    (Peking University)

  • Song Gao

    (South China University of Technology)

  • Yanglong Hou

    (Peking University
    Peking University)

Abstract

Two-dimensional (2D) nonlayered materials have recently provoked a surge of interest due to their abundant species and attractive properties with promising applications in catalysis, nanoelectronics, and spintronics. However, their 2D anisotropic growth still faces considerable challenges and lacks systematic theoretical guidance. Here, we propose a general thermodynamics-triggered competitive growth (TTCG) model providing a multivariate quantitative criterion to predict and guide 2D nonlayered materials growth. Based on this model, we design a universal hydrate-assisted chemical vapor deposition strategy for the controllable synthesis of various 2D nonlayered transition metal oxides. Four unique phases of iron oxides with distinct topological structures have also been selectively grown. More importantly, ultra-thin oxides display high-temperature magnetic ordering and large coercivity. MnxFeyCo3-x-yO4 alloy is also demonstrated to be a promising room-temperature magnetic semiconductor. Our work sheds light on the synthesis of 2D nonlayered materials and promotes their application for room-temperature spintronic devices.

Suggested Citation

  • Zijing Zhao & Zhi Fang & Xiaocang Han & Shiqi Yang & Cong Zhou & Yi Zeng & Biao Zhang & Wei Li & Zhan Wang & Ying Zhang & Jian Zhou & Jiadong Zhou & Yu Ye & Xinmei Hou & Xiaoxu Zhao & Song Gao & Yangl, 2023. "A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36619-5
    DOI: 10.1038/s41467-023-36619-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36619-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36619-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hariom Jani & Jheng-Cyuan Lin & Jiahao Chen & Jack Harrison & Francesco Maccherozzi & Jonathon Schad & Saurav Prakash & Chang-Beom Eom & A. Ariando & T. Venkatesan & Paolo G. Radaelli, 2021. "Antiferromagnetic half-skyrmions and bimerons at room temperature," Nature, Nature, vol. 590(7844), pages 74-79, February.
    2. Lei Liu & Taotao Li & Liang Ma & Weisheng Li & Si Gao & Wenjie Sun & Ruikang Dong & Xilu Zou & Dongxu Fan & Liangwei Shao & Chenyi Gu & Ningxuan Dai & Zhihao Yu & Xiaoqing Chen & Xuecou Tu & Yuefeng N, 2022. "Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire," Nature, Nature, vol. 605(7908), pages 69-75, May.
    3. J. T. Heron & J. L. Bosse & Q. He & Y. Gao & M. Trassin & L. Ye & J. D. Clarkson & C. Wang & Jian Liu & S. Salahuddin & D. C. Ralph & D. G. Schlom & J. Íñiguez & B. D. Huey & R. Ramesh, 2014. "Deterministic switching of ferromagnetism at room temperature using an electric field," Nature, Nature, vol. 516(7531), pages 370-373, December.
    4. Hao Wu & Wenfeng Zhang & Li Yang & Jun Wang & Jie Li & Luying Li & Yihua Gao & Liang Zhang & Juan Du & Haibo Shu & Haixin Chang, 2021. "Strong intrinsic room-temperature ferromagnetism in freestanding non-van der Waals ultrathin 2D crystals," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Jiadong Zhou & Junhao Lin & Xiangwei Huang & Yao Zhou & Yu Chen & Juan Xia & Hong Wang & Yu Xie & Huimei Yu & Jincheng Lei & Di Wu & Fucai Liu & Qundong Fu & Qingsheng Zeng & Chuang-Han Hsu & Changli , 2018. "A library of atomically thin metal chalcogenides," Nature, Nature, vol. 556(7701), pages 355-359, April.
    6. Xiaoqian Zhang & Qiangsheng Lu & Wenqing Liu & Wei Niu & Jiabao Sun & Jacob Cook & Mitchel Vaninger & Paul F. Miceli & David J. Singh & Shang-Wei Lian & Tay-Rong Chang & Xiaoqing He & Jun Du & Liang H, 2021. "Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Dianxiang Ji & Songhua Cai & Tula R. Paudel & Haoying Sun & Chunchen Zhang & Lu Han & Yifan Wei & Yipeng Zang & Min Gu & Yi Zhang & Wenpei Gao & Huaixun Huyan & Wei Guo & Di Wu & Zhengbin Gu & Evgeny , 2019. "Freestanding crystalline oxide perovskites down to the monolayer limit," Nature, Nature, vol. 570(7759), pages 87-90, June.
    8. Lixing Kang & Chen Ye & Xiaoxu Zhao & Xieyu Zhou & Junxiong Hu & Qiao Li & Dan Liu & Chandreyee Manas Das & Jiefu Yang & Dianyi Hu & Jieqiong Chen & Xun Cao & Yong Zhang & Manzhang Xu & Jun Di & Dan T, 2020. "Phase-controllable growth of ultrathin 2D magnetic FeTe crystals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Qiwu Shi & Eric Parsonnet & Xiaoxing Cheng & Natalya Fedorova & Ren-Ci Peng & Abel Fernandez & Alexander Qualls & Xiaoxi Huang & Xue Chang & Hongrui Zhang & David Pesquera & Sujit Das & Dmitri Nikonov, 2022. "The role of lattice dynamics in ferroelectric switching," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Manzhang Xu & Hongjia Ji & Lu Zheng & Weiwei Li & Jing Wang & Hanxin Wang & Lei Luo & Qianbo Lu & Xuetao Gan & Zheng Liu & Xuewen Wang & Wei Huang, 2024. "Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Roméo Juge & Naveen Sisodia & Joseba Urrestarazu Larrañaga & Qiang Zhang & Van Tuong Pham & Kumari Gaurav Rana & Brice Sarpi & Nicolas Mille & Stefan Stanescu & Rachid Belkhou & Mohamad-Assaad Mawass , 2022. "Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Songhua Cai & Yingzhuo Lun & Dianxiang Ji & Peng Lv & Lu Han & Changqing Guo & Yipeng Zang & Si Gao & Yifan Wei & Min Gu & Chunchen Zhang & Zhengbin Gu & Xueyun Wang & Christopher Addiego & Daining Fa, 2022. "Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Julien Lévêque & Elisa Rebolini & Andrés Saúl & Marie-Bernadette Lepetit, 2021. "Theoretical study of the magnetic properties of BaNiF $$_4$$ 4," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-9, October.
    14. Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yixi Zhou & Adrien Waelchli & Margherita Boselli & Iris Crassee & Adrien Bercher & Weiwei Luo & Jiahua Duan & J.L.M. Mechelen & Dirk Marel & Jérémie Teyssier & Carl Willem Rischau & Lukas Korosec & St, 2023. "Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Biao Qin & Muhammad Zeeshan Saeed & Qiuqiu Li & Manli Zhu & Ya Feng & Ziqi Zhou & Jingzhi Fang & Mongur Hossain & Zucheng Zhang & Yucheng Zhou & Ying Huangfu & Rong Song & Jingmei Tang & Bailing Li & , 2023. "General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Donghoon Kim & Minsoo Kim & Steffen Reidt & Hyeon Han & Ali Baghizadeh & Peng Zeng & Hongsoo Choi & Josep Puigmartí-Luis & Morgan Trassin & Bradley J. Nelson & Xiang-Zhong Chen & Salvador Pané, 2023. "Shape-memory effect in twisted ferroic nanocomposites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Yecun Wu & Jingyang Wang & Yanbin Li & Jiawei Zhou & Bai Yang Wang & Ankun Yang & Lin-Wang Wang & Harold Y. Hwang & Yi Cui, 2022. "Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36619-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.