IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36279-5.html
   My bibliography  Save this article

Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike protein

Author

Listed:
  • Christopher Cyrus Kuhn

    (National Institutes of Health)

  • Nirakar Basnet

    (National Institutes of Health)

  • Satish Bodakuntla

    (National Institutes of Health)

  • Pelayo Alvarez-Brecht

    (National Institutes of Health
    University of Oviedo)

  • Scott Nichols

    (National Institutes of Health)

  • Antonio Martinez-Sanchez

    (University of Oviedo
    Avenida Hospital Universitario s/n)

  • Lorenzo Agostini

    (National Institutes of Health)

  • Young-Min Soh

    (National Institutes of Health)

  • Junichi Takagi

    (Osaka University)

  • Christian Biertümpfel

    (National Institutes of Health)

  • Naoko Mizuno

    (National Institutes of Health
    National Institutes of Health)

Abstract

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging shows that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Cellular cryo-electron tomography reveals dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and find that S protein recognizes integrin αvβ3. Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.

Suggested Citation

  • Christopher Cyrus Kuhn & Nirakar Basnet & Satish Bodakuntla & Pelayo Alvarez-Brecht & Scott Nichols & Antonio Martinez-Sanchez & Lorenzo Agostini & Young-Min Soh & Junichi Takagi & Christian Biertümpf, 2023. "Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike protein," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36279-5
    DOI: 10.1038/s41467-023-36279-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36279-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36279-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zunlong Ke & Joaquin Oton & Kun Qu & Mirko Cortese & Vojtech Zila & Lesley McKeane & Takanori Nakane & Jasenko Zivanov & Christopher J. Neufeldt & Berati Cerikan & John M. Lu & Julia Peukes & Xiaoli X, 2020. "Structures and distributions of SARS-CoV-2 spike proteins on intact virions," Nature, Nature, vol. 588(7838), pages 498-502, December.
    2. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    3. Jesse Fajnzylber & James Regan & Kendyll Coxen & Heather Corry & Colline Wong & Alexandra Rosenthal & Daniel Worrall & Francoise Giguel & Alicja Piechocka-Trocha & Caroline Atyeo & Stephanie Fischinge, 2020. "SARS-CoV-2 viral load is associated with increased disease severity and mortality," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    5. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 579(7798), pages 265-269, March.
    6. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "Author Correction: A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 580(7803), pages 7-7, April.
    7. Bryan A. Johnson & Xuping Xie & Adam L. Bailey & Birte Kalveram & Kumari G. Lokugamage & Antonio Muruato & Jing Zou & Xianwen Zhang & Terry Juelich & Jennifer K. Smith & Lihong Zhang & Nathen Bopp & C, 2021. "Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis," Nature, Nature, vol. 591(7849), pages 293-299, March.
    8. Maria Salfer & Javier F Collado & Wolfgang Baumeister & Rubén Fernández-Busnadiego & Antonio Martínez-Sánchez, 2020. "Reliable estimation of membrane curvature for cryo-electron tomography," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-29, August.
    9. Yusuke Higuchi & Tatsuya Suzuki & Takao Arimori & Nariko Ikemura & Emiko Mihara & Yuhei Kirita & Eriko Ohgitani & Osam Mazda & Daisuke Motooka & Shota Nakamura & Yusuke Sakai & Yumi Itoh & Fuminori Su, 2021. "Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Jonathan N Thon & Hannah Macleod & Antonija Jurak Begonja & Jie Zhu & Kun-Chun Lee & Alex Mogilner & John H. Hartwig & Joseph E. Italiano, 2012. "Microtubule and cortical forces determine platelet size during vascular platelet production," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    2. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    4. Yongin Choi & James Slghee Kim & Heejin Choi & Hyojung Lee & Chang Hyeong Lee, 2020. "Assessment of Social Distancing for Controlling COVID-19 in Korea: An Age-Structured Modeling Approach," IJERPH, MDPI, vol. 17(20), pages 1-16, October.
    5. Peter Radvak & Hyung-Joon Kwon & Martina Kosikova & Uriel Ortega-Rodriguez & Ruoxuan Xiang & Je-Nie Phue & Rong-Fong Shen & James Rozzelle & Neeraj Kapoor & Taylor Rabara & Jeff Fairman & Hang Xie, 2021. "SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Bruno Palialol & Paula Pereda & Carlos Azzoni, 2020. "Does weather influence COVID‐19 transmission?," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 981-1004, December.
    7. Xiaoming Hu & Shuang Wang & Shaotong Fu & Meng Qin & Chengliang Lyu & Zhaowen Ding & Yan Wang & Yishu Wang & Dongshu Wang & Li Zhu & Tao Jiang & Jing Sun & Hui Ding & Jie Wu & Lingqian Chang & Yimin C, 2023. "Intranasal mask for protecting the respiratory tract against viral aerosols," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Zexun Chen & Sean Kelty & Alexandre G. Evsukoff & Brooke Foucault Welles & James Bagrow & Ronaldo Menezes & Gourab Ghoshal, 2022. "Contrasting social and non-social sources of predictability in human mobility," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Frederick Ahen, 2022. "Community-Level Health Interventions are Crucial in the Post-COVID-19 Era: Lessons from Africa’s Proactive Public Health Policy Interventions," Humanistic Management Journal, Springer, vol. 7(3), pages 369-390, December.
    11. Muhammad Moazzam & Muhammad Imran Sajid & Hamza Shahid & Jahanzaib Butt & Irfan Bashir & Muhammad Jamshaid & Amir Nasrolahi Shirazi & Rakesh Kumar Tiwari, 2020. "Understanding COVID-19: From Origin to Potential Therapeutics," IJERPH, MDPI, vol. 17(16), pages 1-22, August.
    12. Malik Sallam & Deema Dababseh & Alaa’ Yaseen & Ayat Al-Haidar & Nidaa A. Ababneh & Faris G. Bakri & Azmi Mahafzah, 2020. "Conspiracy Beliefs Are Associated with Lower Knowledge and Higher Anxiety Levels Regarding COVID-19 among Students at the University of Jordan," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    13. Rafida Razali & Vijay Kumar Subbiah & Cahyo Budiman, 2021. "Technical Data of Heterologous Expression and Purification of SARS-CoV-2 Proteases Using Escherichia coli System," Data, MDPI, vol. 6(9), pages 1-13, September.
    14. Beate Jahn & Sarah Friedrich & Joachim Behnke & Joachim Engel & Ursula Garczarek & Ralf Münnich & Markus Pauly & Adalbert Wilhelm & Olaf Wolkenhauer & Markus Zwick & Uwe Siebert & Tim Friede, 2022. "On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 349-382, September.
    15. Jane Lee Jia Jing & Thong Pei Yi & Rajendran J. C. Bose & Jason R. McCarthy & Nagendran Tharmalingam & Thiagarajan Madheswaran, 2020. "Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations," IJERPH, MDPI, vol. 17(9), pages 1-17, May.
    16. Sourya Subhra Nasker & Ananya Nanda & Balamurugan Ramadass & Sasmita Nayak, 2021. "Epidemiological Analysis of SARS-CoV-2 Transmission Dynamics in the State of Odisha, India: A Yearlong Exploratory Data Analysis," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    17. Naoko Iwata-Yoshikawa & Masatoshi Kakizaki & Nozomi Shiwa-Sudo & Takashi Okura & Maino Tahara & Shuetsu Fukushi & Ken Maeda & Miyuki Kawase & Hideki Asanuma & Yuriko Tomita & Ikuyo Takayama & Shutoku , 2022. "Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Dannon Baker & Marius van den Beek & Daniel Blankenberg & Dave Bouvier & John Chilton & Nate Coraor & Frederik Coppens & Ignacio Eguinoa & Simon Gladman & Björn Grüning & Nicholas Keener & Delphine La, 2020. "No more business as usual: Agile and effective responses to emerging pathogen threats require open data and open analytics," PLOS Pathogens, Public Library of Science, vol. 16(8), pages 1-8, August.
    19. Dongsheng Chen & Jian Sun & Jiacheng Zhu & Xiangning Ding & Tianming Lan & Xiran Wang & Weiying Wu & Zhihua Ou & Linnan Zhu & Peiwen Ding & Haoyu Wang & Lihua Luo & Rong Xiang & Xiaoling Wang & Jiayin, 2021. "Single cell atlas for 11 non-model mammals, reptiles and birds," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    20. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36279-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.