IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36142-7.html
   My bibliography  Save this article

Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst

Author

Listed:
  • Guodong Li

    (University of Cincinnati)

  • Guanqun Han

    (University of Cincinnati)

  • Lu Wang

    (University of California Riverside)

  • Xiaoyu Cui

    (University of Cincinnati)

  • Nicole K. Moehring

    (Vanderbilt University
    Vanderbilt University
    Vanderbilt Institute of Nanoscale Science and Engineering)

  • Piran R. Kidambi

    (Vanderbilt University
    Vanderbilt University
    Vanderbilt Institute of Nanoscale Science and Engineering)

  • De-en Jiang

    (University of California Riverside
    Vanderbilt University)

  • Yujie Sun

    (University of Cincinnati)

Abstract

The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7 electrocatalyst. Such a strategy not only produces more valuable anodic product than O2 but also releases H2 at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7 than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2 at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2 with a cell voltage of only 0.60 V.

Suggested Citation

  • Guodong Li & Guanqun Han & Lu Wang & Xiaoyu Cui & Nicole K. Moehring & Piran R. Kidambi & De-en Jiang & Yujie Sun, 2023. "Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36142-7
    DOI: 10.1038/s41467-023-36142-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36142-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36142-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fuzhan Song & Wei Li & Jiaqi Yang & Guanqun Han & Peilin Liao & Yujie Sun, 2018. "Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Shi & Di Si & Xue Teng & Lisong Chen & Jianlin Shi, 2024. "Pd/NiMoO4/NF electrocatalysts for the efficient and ultra-stable synthesis and electrolyte-assisted extraction of glycolate," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Guodong Fu & Xiaomin Kang & Yan Zhang & Ying Guo & Zhiwei Li & Jianwen Liu & Lei Wang & Jiujun Zhang & Xian-Zhu Fu & Jing-Li Luo, 2023. "Capturing critical gem-diol intermediates and hydride transfer for anodic hydrogen production from 5-hydroxymethylfurfural," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libo Zhu & Jian Huang & Ge Meng & Tiantian Wu & Chang Chen & Han Tian & Yafeng Chen & Fantao Kong & Ziwei Chang & Xiangzhi Cui & Jianlin Shi, 2023. "Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    3. Saideep Singh & Rishi Verma & Nidhi Kaul & Jacinto Sa & Ajinkya Punjal & Shriganesh Prabhu & Vivek Polshettiwar, 2023. "Surface plasmon-enhanced photo-driven CO2 hydrogenation by hydroxy-terminated nickel nitride nanosheets," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Zhengxin Zhu & Zaichun Liu & Yichen Yin & Yuan Yuan & Yahan Meng & Taoli Jiang & Qia Peng & Weiping Wang & Wei Chen, 2022. "Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36142-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.