Author
Listed:
- Jian Chen
(Central South University)
- Xin Wang
(Zhejiang Wanli University)
- Chang Sun
(Beijing Institute of Technology)
- Zheng Li
(Hunan University of Science and Technology)
- Yangen Zhou
(Central South University)
- Zhenhua Li
(Central South University)
- Yumin Qian
(Beijing Institute of Technology)
- Mengran Wang
(Central South University)
- Simin Li
(Central South University)
- Yanqing Lai
(Central South University)
- Shuangyin Wang
(Zhejiang Wanli University
Hunan University)
Abstract
Electrooxidation of pollutants at potentials near or below the thermodynamic hydrogen evolution potential offers transformative opportunities for energy-efficient pollutant valorization and diverse energy devices. However, existing catalysts suffer from rapid deactivation due to the inevitable overoxidation. Herein, we present an amorphous phosphorus-doped CoFe₂O₄ catalyst that achieves industrial-level current densities (1 A cm⁻²) at ultralow potentials (0.06, 0.65, and −0.17 V vs. reversible hydrogen electrode) for hydrazine, sulfion, and borohydride electrooxidation, respectively, along with 400-hour stability at 300 mA cm⁻² in a hydrazine-assisted electrolyzer. Mechanistic studies reveal electron transfer from Co-P ligands to Co-O ligands, which enhances the involvement of Co-O ligands in low-potential electrooxidation while protecting Co-P ligands from overoxidation. Furthermore, more positive charges on Co centers lower the activation barrier for such pollutant electrooxidation. This work opens a paradigm for designing robust electrocatalysts by decoupling catalytic activity from oxidative deactivation.
Suggested Citation
Jian Chen & Xin Wang & Chang Sun & Zheng Li & Yangen Zhou & Zhenhua Li & Yumin Qian & Mengran Wang & Simin Li & Yanqing Lai & Shuangyin Wang, 2025.
"Surface amorphization enables robust catalyst for industrial-level low-potential electrooxidation reactions,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62293-w
DOI: 10.1038/s41467-025-62293-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62293-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.