IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36015-z.html
   My bibliography  Save this article

Selective hydrogenation via precise hydrogen bond interactions on catalytic scaffolds

Author

Listed:
  • Song Shi

    (University of Delaware
    Chinese Academy of Sciences)

  • Piaoping Yang

    (University of Delaware)

  • Chaochao Dun

    (Lawrence Berkeley National Laboratory)

  • Weiqing Zheng

    (University of Delaware)

  • Jeffrey J. Urban

    (Lawrence Berkeley National Laboratory)

  • Dionisios G. Vlachos

    (University of Delaware)

Abstract

The active site environment in enzymes has been known to affect catalyst performance through weak interactions with a substrate, but precise synthetic control of enzyme inspired heterogeneous catalysts remains challenging. Here, we synthesize hyper-crosslinked porous polymer (HCPs) with solely -OH or -CH3 groups on the polymer scaffold to tune the environment of active sites. Reaction rate measurements, spectroscopic techniques, along with DFT calculations show that HCP-OH catalysts enhance the hydrogenation rate of H-acceptor substrates containing carbonyl groups whereas hydrophobic HCP- CH3 ones promote non-H bond substrate activation. The functional groups go beyond enhancing substrate adsorption to partially activate the C = O bond and tune the catalytic sites. They also expose selectivity control in the hydrogenation of multifunctional substrates through preferential substrate functional group adsorption. The proposed synthetic strategy opens a new class of porous polymers for selective catalysis.

Suggested Citation

  • Song Shi & Piaoping Yang & Chaochao Dun & Weiqing Zheng & Jeffrey J. Urban & Dionisios G. Vlachos, 2023. "Selective hydrogenation via precise hydrogen bond interactions on catalytic scaffolds," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36015-z
    DOI: 10.1038/s41467-023-36015-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36015-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36015-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaobo Dai & Lisa-Marie Funk & Fabian Rabe Pappenheim & Viktor Sautner & Mirko Paulikat & Benjamin Schröder & Jon Uranga & Ricardo A. Mata & Kai Tittmann, 2019. "Low-barrier hydrogen bonds in enzyme cooperativity," Nature, Nature, vol. 573(7775), pages 609-613, September.
    2. Qi Sun & Sai Wang & Briana Aguila & Xiangju Meng & Shengqian Ma & Feng-Shou Xiao, 2018. "Creating solvation environments in heterogeneous catalysts for efficient biomass conversion," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Rui Lang & Wei Xi & Jin-Cheng Liu & Yi-Tao Cui & Tianbo Li & Adam Fraser Lee & Fang Chen & Yang Chen & Lei Li & Lin Li & Jian Lin & Shu Miao & Xiaoyan Liu & Ai-Qin Wang & Xiaodong Wang & Jun Luo & Bot, 2019. "Non defect-stabilized thermally stable single-atom catalyst," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohui He & Hao Zhang & Xingcong Zhang & Ying Zhang & Qian He & Hongyu Chen & Yujie Cheng & Mi Peng & Xuetao Qin & Hongbing Ji & Ding Ma, 2022. "Building up libraries and production line for single atom catalysts with precursor-atomization strategy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Weiwei Fu & Jin Wan & Huijuan Zhang & Jian Li & Weigen Chen & Yuke Li & Zaiping Guo & Yu Wang, 2022. "Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Junjie Li & Ya-fei Jiang & Qi Wang & Cong-Qiao Xu & Duojie Wu & Mohammad Norouzi Banis & Keegan R. Adair & Kieran Doyle-Davis & Debora Motta Meira & Y. Zou Finfrock & Weihan Li & Lei Zhang & Tsun-Kong, 2021. "A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
    5. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Jingyi Yang & Yike Huang & Haifeng Qi & Chaobin Zeng & Qike Jiang & Yitao Cui & Yang Su & Xiaorui Du & Xiaoli Pan & Xiaoyan Liu & Weizhen Li & Botao Qiao & Aiqin Wang & Tao Zhang, 2022. "Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Leong, Kee Wah & Wang, Yifei & Ni, Meng & Pan, Wending & Luo, Shijing & Leung, Dennis Y.C., 2022. "Rechargeable Zn-air batteries: Recent trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Hu, Lei & Wu, Zhen & Jiang, Yetao & Wang, Xiaoyu & He, Aiyong & Song, Jie & Xu, Jiming & Zhou, Shouyong & Zhao, Yijiang & Xu, Jiaxing, 2020. "Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Lili Lin & Jinjia Liu & Xi Liu & Zirui Gao & Ning Rui & Siyu Yao & Feng Zhang & Maolin Wang & Chang Liu & Lili Han & Feng Yang & Sen Zhang & Xiao-dong Wen & Sanjaya D. Senanayake & Yichao Wu & Xiaonia, 2021. "Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36015-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.