IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35866-w.html
   My bibliography  Save this article

Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material

Author

Listed:
  • Hyowon Seo

    (Massachusetts Institute of Technology)

  • T. Alan Hatton

    (Massachusetts Institute of Technology)

Abstract

Direct air capture of carbon dioxide is a viable option for the mitigation of CO2 emissions and their impact on global climate change. Conventional processes for carbon capture from ambient air require 230 to 800 kJ thermal per mole of CO2, which accounts for most of the total cost of capture. Here, we demonstrate electrochemical direct air capture using neutral red as a redox-active material in an aqueous solution enabled by the inclusion of nicotinamide as a hydrotropic solubilizing agent. The electrochemical system demonstrates a high electron utilization of 0.71 in a continuous flow cell with an estimated minimum work of 35 kJe per mole of CO2 from 15% CO2. Further exploration using ambient air (410 ppm CO2 in the presence of 20% oxygen) as a feed gas shows electron utilization of 0.38 in a continuous flow cell to provide an estimated minimum work of 65 kJe per mole of CO2.

Suggested Citation

  • Hyowon Seo & T. Alan Hatton, 2023. "Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35866-w
    DOI: 10.1038/s41467-023-35866-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35866-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35866-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shijian Jin & Min Wu & Yan Jing & Roy G. Gordon & Michael J. Aziz, 2022. "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yayuan Liu & Hong-Zhou Ye & Kyle M. Diederichsen & Troy Van Voorhis & T. Alan Hatton, 2020. "Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Li & Xunhua Zhao & Lingyu Zhang & Anmol Mathur & Yu Xu & Zhiwei Fang & Luo Gu & Yuanyue Liu & Yayuan Liu, 2024. "Redox-tunable isoindigos for electrochemically mediated carbon capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Shijian Jin & Min Wu & Yan Jing & Roy G. Gordon & Michael J. Aziz, 2022. "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    4. Wang, Changhong & Jiang, Kaiqi & Yu, Hai & Yang, Shenghai & Li, Kangkang, 2022. "Copper electrowinning-coupled CO2 capture in solvent based post-combustion capture," Applied Energy, Elsevier, vol. 316(C).
    5. Agliuzza, Matteo & Mezza, Alessio & Sacco, Adriano, 2023. "Solar-driven integrated carbon capture and utilization: Coupling CO2 electroreduction toward CO with capture or photovoltaic systems," Applied Energy, Elsevier, vol. 334(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35866-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.