IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35623-5.html
   My bibliography  Save this article

The electric field cavity array effect of 2D nano-sieves

Author

Listed:
  • Fan Xu

    (Chongqing University)

  • Yuke Li

    (Chinese University of Hong Kong, Shatin)

  • Qing Zou

    (Chongqing University)

  • Yu Shuang He

    (Chongqing University)

  • Zijia Shen

    (Chongqing University)

  • Chen Li

    (Chongqing University)

  • Huijuan Zhang

    (Chongqing University)

  • Feipeng Wang

    (Chongqing University)

  • Jian Li

    (Chongqing University)

  • Yu Wang

    (Chongqing University
    Chongqing University)

Abstract

For the upsurge of high breakdown strength ( $${{{{{{\rm{E}}}}}}}_{{{{{{\rm{b}}}}}}}$$ E b ), efficiency ( $${{{{{\rm{\eta }}}}}}$$ η ), and discharge energy density ( $${{{{{{\rm{U}}}}}}}_{{{{{{\rm{e}}}}}}}$$ U e ) of next-generation dielectrics, nanocomposites are the most promising candidates. However, the skillful regulation and application of nano-dielectrics have not been realized so far, because the mechanism of enhanced properties is still not explicitly apprehended. Here, we show that the electric field cavity array in the outer interface of nanosieve-substrate could modulate the potential distribution array and promote the flow of free charges to the hole, which works together with the intrinsic defect traps of active Co3O4 surface to trap and absorb high-energy carriers. The electric field and potential array could be regulated by the size and distribution of mesoporous in 2-dimensional nano-sieves. The poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposites film exhibits an $${{{{{{\rm{E}}}}}}}_{{{{{{\rm{b}}}}}}}$$ E b of 803 MV m−1 with up to 80% enhancement, accompanied by high $${{{{{{\rm{U}}}}}}}_{{{{{{\rm{e}}}}}}}$$ U e = 41.6 J cm−3 and $${{{{{\rm{\eta }}}}}}\,$$ η ≈ 90%, outperforming the state-of-art nano-dielectrics. These findings enable deeper construction of nano-dielectrics and provide a different way to illustrate the intricate modification mechanism from macro to micro.

Suggested Citation

  • Fan Xu & Yuke Li & Qing Zou & Yu Shuang He & Zijia Shen & Chen Li & Huijuan Zhang & Feipeng Wang & Jian Li & Yu Wang, 2022. "The electric field cavity array effect of 2D nano-sieves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35623-5
    DOI: 10.1038/s41467-022-35623-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35623-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35623-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Li & Lei Chen & Matthew R. Gadinski & Shihai Zhang & Guangzu Zhang & Haoyu U. Li & Elissei Iagodkine & Aman Haque & Long-Qing Chen & Thomas N. Jackson & Qing Wang, 2015. "Flexible high-temperature dielectric materials from polymer nanocomposites," Nature, Nature, vol. 523(7562), pages 576-579, July.
    2. Chao Yuan & Yao Zhou & Yujie Zhu & Jiajie Liang & Shaojie Wang & Simin Peng & Yushu Li & Sang Cheng & Mingcong Yang & Jun Hu & Bo Zhang & Rong Zeng & Jinliang He & Qi Li, 2020. "Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Wang & Yujie Zhu & Jing Fu & Mingcong Yang & Zhaoyu Ran & Junluo Li & Manxi Li & Jun Hu & Jinliang He & Qi Li, 2023. "Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Xinhui Li & Shan He & Yanda Jiang & Jian Wang & Yi Yu & Xiaofei Liu & Feng Zhu & Yimei Xie & Youyong Li & Cheng Ma & Zhonghui Shen & Baowen Li & Yang Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2023. "Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    4. Deng, Wei & Akram, Rabia & Mirza, Nawazish, 2022. "Economic performance and natural resources: Evaluating the role of economic risk," Resources Policy, Elsevier, vol. 78(C).
    5. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Mejia, Cristian & Kajikawa, Yuya, 2020. "Emerging topics in energy storage based on a large-scale analysis of academic articles and patents," Applied Energy, Elsevier, vol. 263(C).
    8. Xu, Da & Xiang, Shizhe & Bai, Ziyi & Wei, Juan & Gao, Menglu, 2023. "Optimal multi-energy portfolio towards zero carbon data center buildings in the presence of proactive demand response programs," Applied Energy, Elsevier, vol. 350(C).
    9. Peter L. Borland & Kevin McDonnell & Mary Harty, 2023. "Assessment of the Potential to Use the Expelled Heat Energy from a Typical Data Centre in Ireland for Alternative Farming Methods," Energies, MDPI, vol. 16(18), pages 1-32, September.
    10. S. M. Mezbahul Amin & Nazia Hossain & Molla Shahadat Hossain Lipu & Shabana Urooj & Asma Akter, 2023. "Development of a PV/Battery Micro-Grid for a Data Center in Bangladesh: Resilience and Sustainability Analysis," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    11. Chen, Xiaoyuan & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Zhou, Pang & Yang, Ruohuan & Shen, Boyang, 2023. "Energy reliability enhancement of a data center/wind hybrid DC network using superconducting magnetic energy storage," Energy, Elsevier, vol. 263(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35623-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.