IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34472-6.html
   My bibliography  Save this article

Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging

Author

Listed:
  • Jianian Lin

    (Purdue University
    Purdue University)

  • Zongyue Cheng

    (Purdue University
    Purdue University)

  • Guang Yang

    (Columbia University Irving Medical Center)

  • Meng Cui

    (Purdue University
    Purdue University
    Purdue University)

Abstract

To understand the function and mechanism of biological systems, it is crucial to observe the cellular dynamics at high spatiotemporal resolutions within live animals. The recent advances in genetically encoded function indicators have significantly improved the response rate to a near millisecond time scale. However, the widely employed in vivo imaging systems often lack the temporal solution to capture the fast biological dynamics. To broadly enable the capability of high-speed in vivo deep-tissue imaging, we developed an optical gearbox. As an add-on module, the optical gearbox can convert the common multiphoton imaging systems for versatile multiscale high-throughput imaging applications. In this work, we demonstrate in vivo 2D and 3D function imaging in mammalian brains at frame rates ranging from 50 to 1000 Hz. The optical gearbox’s versatility and compatibility with the widely employed imaging components will be highly valuable to a variety of deep tissue imaging applications.

Suggested Citation

  • Jianian Lin & Zongyue Cheng & Guang Yang & Meng Cui, 2022. "Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34472-6
    DOI: 10.1038/s41467-022-34472-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34472-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34472-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaowei Chen & Ulrich Leischner & Nathalie L. Rochefort & Israel Nelken & Arthur Konnerth, 2011. "Functional mapping of single spines in cortical neurons in vivo," Nature, Nature, vol. 475(7357), pages 501-505, July.
    2. Yoav Adam & Jeong J. Kim & Shan Lou & Yongxin Zhao & Michael E. Xie & Daan Brinks & Hao Wu & Mohammed A. Mostajo-Radji & Simon Kheifets & Vicente Parot & Selmaan Chettih & Katherine J. Williams & Benj, 2019. "Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics," Nature, Nature, vol. 569(7756), pages 413-417, May.
    3. Hod Dana & Anat Marom & Shir Paluch & Roman Dvorkin & Inbar Brosh & Shy Shoham, 2014. "Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuting Li & Zongyue Cheng & Chenmao Wang & Jianian Lin & Hehai Jiang & Meng Cui, 2024. "Geometric transformation adaptive optics (GTAO) for volumetric deep brain imaging through gradient-index lenses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    2. Amelie C. F. Bergs & Jana F. Liewald & Silvia Rodriguez-Rozada & Qiang Liu & Christin Wirt & Artur Bessel & Nadja Zeitzschel & Hilal Durmaz & Adrianna Nozownik & Holger Dill & Maëlle Jospin & Johannes, 2023. "All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Eric Lowet & Krishnakanth Kondabolu & Samuel Zhou & Rebecca A. Mount & Yangyang Wang & Cara R. Ravasio & Xue Han, 2022. "Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Yide Zhang & Binglin Shen & Tong Wu & Jerry Zhao & Joseph C. Jing & Peng Wang & Kanomi Sasaki-Capela & William G. Dunphy & David Garrett & Konstantin Maslov & Weiwei Wang & Lihong V. Wang, 2022. "Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Meng Wang & Ke Liu & Junxia Pan & Jialin Li & Pei Sun & Yongsheng Zhang & Longhui Li & Wenyan Guo & Qianqian Xin & Zhikai Zhao & Yurong Liu & Zhenqiao Zhou & Jing Lyu & Ting Zheng & Yunyun Han & Chunq, 2022. "Brain-wide projection reconstruction of single functionally defined neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Arita Silapetere & Songhwan Hwang & Yusaku Hontani & Rodrigo G. Fernandez Lahore & Jens Balke & Francisco Velazquez Escobar & Martijn Tros & Patrick E. Konold & Rainer Matis & Roberta Croce & Peter J., 2022. "QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Changjia Cai & Johannes Friedrich & Amrita Singh & M Hossein Eybposh & Eftychios A Pnevmatikakis & Kaspar Podgorski & Andrea Giovannucci, 2021. "VolPy: Automated and scalable analysis pipelines for voltage imaging datasets," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-28, April.
    9. Yuki Bando & Michael Wenzel & Rafael Yuste, 2021. "Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34472-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.