IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61774-2.html
   My bibliography  Save this article

Imaging sensory transmission and neuronal plasticity in primary sensory neurons with a positively tuned voltage indicator

Author

Listed:
  • Yan Zhang

    (University of Texas Health Science Center at San Antonio)

  • John Shannonhouse

    (University of Texas Health Science Center at San Antonio)

  • Ruben Gomez

    (University of Texas Health Science Center at San Antonio)

  • Hyeonwi Son

    (University of Texas Health Science Center at San Antonio)

  • Hirotake Ishida

    (University of Texas Health Science Center at San Antonio)

  • Stephen Evans

    (Stanford University)

  • Mariya Chavarha

    (Stanford University)

  • Dongqing Shi

    (Stanford University)

  • Guofeng Zhang

    (Stanford University)

  • Michael Z. Lin

    (Stanford University
    Stanford University
    Stanford University)

  • Yu Shin Kim

    (University of Texas Health Science Center at San Antonio
    University of Texas Health Science Center at San Antonio)

Abstract

Primary sensory neurons convert external stimuli into electrical signals, yet how heterogeneous neurons encode distinct sensations remains unclear. In vivo dorsal root ganglia (DRG) imaging with genetically-encoded Ca2+ indicators (GECIs) enables mapping of neuronal activity from over 1800 neurons per DRG in live mice, offering high spatial and populational resolution. However, GECIs’ slow Ca2+ response kinetics limit the temporal accuracy of neuronal electrical dynamics. Genetically-encoded voltage indicators (GEVIs) provide real-time voltage tracking but often lack the brightness and dynamic range required for in vivo use. Here, we used soma-targeted ASAP4.4-Kv, a bright and fast positively tuned GEVI, to dissect temporal dynamics of DRG neuron responses to mechanical, thermal, or chemical stimulation in live male and female mice. ASAP4.4-Kv revealed previously unrecognized cell-to-cell electrical synchronization and robust dynamic transformations in sensory coding following tissue injury. Combining GEVI and GECI imaging empowers spatiotemporal analysis of sensory signal processing and integration mechanisms in vivo.

Suggested Citation

  • Yan Zhang & John Shannonhouse & Ruben Gomez & Hyeonwi Son & Hirotake Ishida & Stephen Evans & Mariya Chavarha & Dongqing Shi & Guofeng Zhang & Michael Z. Lin & Yu Shin Kim, 2025. "Imaging sensory transmission and neuronal plasticity in primary sensory neurons with a positively tuned voltage indicator," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61774-2
    DOI: 10.1038/s41467-025-61774-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61774-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61774-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ahmed S. Abdelfattah & Rosario Valenti & Jihong Zheng & Allan Wong & Kaspar Podgorski & Minoru Koyama & Douglas S. Kim & Eric R. Schreiter, 2020. "A general approach to engineer positive-going eFRET voltage indicators," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Yoav Adam & Jeong J. Kim & Shan Lou & Yongxin Zhao & Michael E. Xie & Daan Brinks & Hao Wu & Mohammed A. Mostajo-Radji & Simon Kheifets & Vicente Parot & Selmaan Chettih & Katherine J. Williams & Benj, 2019. "Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics," Nature, Nature, vol. 569(7756), pages 413-417, May.
    3. Kiryl D. Piatkevich & Seth Bensussen & Hua-an Tseng & Sanaya N. Shroff & Violeta Gisselle Lopez-Huerta & Demian Park & Erica E. Jung & Or A. Shemesh & Christoph Straub & Howard J. Gritton & Michael F., 2019. "Population imaging of neural activity in awake behaving mice," Nature, Nature, vol. 574(7778), pages 413-417, October.
    4. Christopher J. Roome & Bernd Kuhn, 2018. "Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuki Bando & Michael Wenzel & Rafael Yuste, 2021. "Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Ruth R. Sims & Imane Bendifallah & Christiane Grimm & Aysha S. Mohamed Lafirdeen & Soledad Domínguez & Chung Yuen Chan & Xiaoyu Lu & Benoît C. Forget & François St-Pierre & Eirini Papagiakoumou & Vale, 2024. "Scanless two-photon voltage imaging," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Eric Lowet & Krishnakanth Kondabolu & Samuel Zhou & Rebecca A. Mount & Yangyang Wang & Cara R. Ravasio & Xue Han, 2022. "Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Arita Silapetere & Songhwan Hwang & Yusaku Hontani & Rodrigo G. Fernandez Lahore & Jens Balke & Francisco Velazquez Escobar & Martijn Tros & Patrick E. Konold & Rainer Matis & Roberta Croce & Peter J., 2022. "QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Pojeong Park & J. David Wong-Campos & Daniel G. Itkis & Byung Hun Lee & Yitong Qi & Hunter C. Davis & Benjamin Antin & Amol Pasarkar & Jonathan B. Grimm & Sarah E. Plutkis & Katie L. Holland & Liam Pa, 2025. "Dendritic excitations govern back-propagation via a spike-rate accelerometer," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    7. Changjia Cai & Johannes Friedrich & Amrita Singh & M Hossein Eybposh & Eftychios A Pnevmatikakis & Kaspar Podgorski & Andrea Giovannucci, 2021. "VolPy: Automated and scalable analysis pipelines for voltage imaging datasets," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-27, April.
    8. Jianian Lin & Zongyue Cheng & Guang Yang & Meng Cui, 2022. "Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Amelie C. F. Bergs & Jana F. Liewald & Silvia Rodriguez-Rozada & Qiang Liu & Christin Wirt & Artur Bessel & Nadja Zeitzschel & Hilal Durmaz & Adrianna Nozownik & Holger Dill & Maëlle Jospin & Johannes, 2023. "All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Yide Zhang & Binglin Shen & Tong Wu & Jerry Zhao & Joseph C. Jing & Peng Wang & Kanomi Sasaki-Capela & William G. Dunphy & David Garrett & Konstantin Maslov & Weiwei Wang & Lihong V. Wang, 2022. "Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Joshua S. Selfe & Teresa J. S. Steyn & Eran F. Shorer & Richard J. Burman & Kira M. Düsterwald & Ariel Z. Kraitzick & Ahmed S. Abdelfattah & Eric R. Schreiter & Sarah E. Newey & Colin J. Akerman & Jos, 2024. "All-optical reporting of inhibitory receptor driving force in the nervous system," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Ting-Feng Lin & Silas E. Busch & Christian Hansel, 2024. "Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61774-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.