IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33921-6.html
   My bibliography  Save this article

An ultra-high gain single-photon transistor in the microwave regime

Author

Listed:
  • Zhiling Wang

    (Tsinghua University)

  • Zenghui Bao

    (Tsinghua University)

  • Yan Li

    (Tsinghua University)

  • Yukai Wu

    (Tsinghua University
    Hefei National Laboratory)

  • Weizhou Cai

    (Tsinghua University)

  • Weiting Wang

    (Tsinghua University)

  • Xiyue Han

    (Tsinghua University)

  • Jiahui Wang

    (Tsinghua University)

  • Yipu Song

    (Tsinghua University
    Hefei National Laboratory)

  • Luyan Sun

    (Tsinghua University
    Hefei National Laboratory)

  • Hongyi Zhang

    (Tsinghua University
    Hefei National Laboratory)

  • Luming Duan

    (Tsinghua University
    Hefei National Laboratory)

Abstract

A photonic transistor that can switch or amplify an optical signal with a single gate photon requires strong non-linear interaction at the single-photon level. Circuit quantum electrodynamics provides great flexibility to generate such an interaction, and thus could serve as an effective platform to realize a high-performance single-photon transistor. Here we demonstrate such a photonic transistor in the microwave regime. Our device consists of two microwave cavities dispersively coupled to a superconducting qubit. A single gate photon imprints a phase shift on the qubit state through one cavity, and further shifts the resonance frequency of the other cavity. In this way, we realize a gain of the transistor up to 53.4 dB, with an extinction ratio better than 20 dB. Our device outperforms previous devices in the optical regime by several orders in terms of optical gain, which indicates a great potential for application in the field of microwave quantum photonics and quantum information processing.

Suggested Citation

  • Zhiling Wang & Zenghui Bao & Yan Li & Yukai Wu & Weizhou Cai & Weiting Wang & Xiyue Han & Jiahui Wang & Yipu Song & Luyan Sun & Hongyi Zhang & Luming Duan, 2022. "An ultra-high gain single-photon transistor in the microwave regime," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33921-6
    DOI: 10.1038/s41467-022-33921-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33921-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33921-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. M. Fink & M. Göppl & M. Baur & R. Bianchetti & P. J. Leek & A. Blais & A. Wallraff, 2008. "Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system," Nature, Nature, vol. 454(7202), pages 315-318, July.
    2. T. G. Tiecke & J. D. Thompson & N. P. de Leon & L. R. Liu & V. Vuletić & M. D. Lukin, 2014. "Nanophotonic quantum phase switch with a single atom," Nature, Nature, vol. 508(7495), pages 241-244, April.
    3. Anton V. Zasedatelev & Anton V. Baranikov & Denis Sannikov & Darius Urbonas & Fabio Scafirimuto & Vladislav Yu. Shishkov & Evgeny S. Andrianov & Yurii E. Lozovik & Ullrich Scherf & Thilo Stöferle & Ra, 2021. "Single-photon nonlinearity at room temperature," Nature, Nature, vol. 597(7877), pages 493-497, September.
    4. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    5. Anton V. Zasedatelev & Anton V. Baranikov & Denis Sannikov & Darius Urbonas & Fabio Scafirimuto & Vladislav Yu. Shishkov & Evgeny S. Andrianov & Yurii E. Lozovik & Ullrich Scherf & Thilo Stöferle & Ra, 2021. "Publisher Correction: Single-photon nonlinearity at room temperature," Nature, Nature, vol. 600(7889), pages 19-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Mehdi & M. Gundín & C. Millet & N. Somaschi & A. Lemaître & I. Sagnes & L. Gratiet & D. A. Fioretto & N. Belabas & O. Krebs & P. Senellart & L. Lanco, 2024. "Giant optical polarisation rotations induced by a single quantum dot spin," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Abhi Saxena & Arnab Manna & Rahul Trivedi & Arka Majumdar, 2023. "Realizing tight-binding Hamiltonians using site-controlled coupled cavity arrays," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Prataviera, G.A. & de Oliveira, M.C., 2015. "Susceptibility of a two-level atom near an isotropic photonic band edge: Transparency and band edge profile reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 34-40.
    5. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
    9. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    12. Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
    13. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2020. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving," CREMA Working Paper Series 2020-18, Center for Research in Economics, Management and the Arts (CREMA).
    15. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Steve J. Bickley & Alison Macintyre & Benno Torgler, 2021. "Artificial Intelligence and Big Data in Sustainable Entrepreneurship," CREMA Working Paper Series 2021-11, Center for Research in Economics, Management and the Arts (CREMA).
    18. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2021. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving (Extended Version with Applications)," CREMA Working Paper Series 2021-14, Center for Research in Economics, Management and the Arts (CREMA).
    20. Jiang, Min & Li, Hui & Zhang, Zeng-ke & Zeng, Jia, 2011. "Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 760-768.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33921-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.