IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2440-d1155245.html
   My bibliography  Save this article

Correlations in Quantum Network Topologies Created with Cloning

Author

Listed:
  • Manish Kumar Shukla

    (Independent Researcher, Eden Au Lac Apartment, Indiranagar, Bangalore 560038, India)

  • Minyi Huang

    (Department of Mathematical Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Indranil Chakrabarty

    (Center for Security, Theory and Algorithmic Research, International Institute of Information Technology-Hyderabad, Gachibowli, Telangana 500032, India
    Center for Quantum Science and Technology, International Institute of Information Technology-Hyderabad, Gachibowli, Telangana 500032, India)

  • Junde Wu

    (School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China)

Abstract

With progress in quantum technologies, the field of quantum networks has emerged as an important area of research. In the last few years, there has been substantial progress in understanding the correlations present in quantum networks. In this article, we study cloning as a prospective method to generate three party quantum networks which will help us to create larger networks. We analyze various quantum network topologies that can be created using cloning transformations. This would be useful in situations wherever the availability of entangled pairs is limited. In addition to that, we focus on the problem of distinguishing networks created by cloning from those that are created by distributing independently generated entangled pairs. We find that there are several states that cannot be distinguished using the Finner inequalities in the standard way. For such states, we propose an extension to the existing Finner inequality for triangle networks by further increasing the number of observers from three to four or six depending on the network topology. This takes into account the additional correlations that exist in the case of cloned networks. In the last part of the article, we use tripartite mutual information to distinguish cloned networks from networks created by independent sources and further use squashed entanglement as a measure to quantify the amount of dependence in the cloned networks.

Suggested Citation

  • Manish Kumar Shukla & Minyi Huang & Indranil Chakrabarty & Junde Wu, 2023. "Correlations in Quantum Network Topologies Created with Cloning," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2440-:d:1155245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arun Kumar Pati & Samuel L. Braunstein, 2000. "Impossibility of deleting an unknown quantum state," Nature, Nature, vol. 404(6774), pages 164-165, March.
    2. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
    5. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    8. Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
    9. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2020. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving," CREMA Working Paper Series 2020-18, Center for Research in Economics, Management and the Arts (CREMA).
    11. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Steve J. Bickley & Alison Macintyre & Benno Torgler, 2021. "Artificial Intelligence and Big Data in Sustainable Entrepreneurship," CREMA Working Paper Series 2021-11, Center for Research in Economics, Management and the Arts (CREMA).
    14. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2021. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving (Extended Version with Applications)," CREMA Working Paper Series 2021-14, Center for Research in Economics, Management and the Arts (CREMA).
    16. Jiang, Min & Li, Hui & Zhang, Zeng-ke & Zeng, Jia, 2011. "Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 760-768.
    17. D. Zhu & Z. P. Cian & C. Noel & A. Risinger & D. Biswas & L. Egan & Y. Zhu & A. M. Green & C. Huerta Alderete & N. H. Nguyen & Q. Wang & A. Maksymov & Y. Nam & M. Cetina & N. M. Linke & M. Hafezi & C., 2022. "Cross-platform comparison of arbitrary quantum states," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    18. Tulio Brito Brasil & Valeriy Novikov & Hugo Kerdoncuff & Mikael Lassen & Eugene S. Polzik, 2022. "Two-colour high-purity Einstein-Podolsky-Rosen photonic state," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    19. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Ning-Ning Wang & Alejandro Pozas-Kerstjens & Chao Zhang & Bi-Heng Liu & Yun-Feng Huang & Chuan-Feng Li & Guang-Can Guo & Nicolas Gisin & Armin Tavakoli, 2023. "Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2440-:d:1155245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.