IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v98y2025i8d10.1140_epjb_s10051-025-01017-x.html
   My bibliography  Save this article

Tunable routing properties of single photon interacting with two quantum dots in a quantum router with the工-type coupled cavity waveguide system

Author

Listed:
  • Myong-Chol Ko

    (University of Science and Technology Beijing
    Kim Il Sung University)

  • Sung-Jin Kim

    (University of Science and Technology Beijing
    Kim Il Sung University)

  • Nam-Chol Kim

    (Kim Il Sung University)

  • Su-Ryon Ri

    (Kim Il Sung University)

  • Ju-Song Ryom

    (Kim Il Sung University)

  • Kang-Sa Yun

    (Kim Chaek University of Technology)

  • Chung-Song Jo

    (Kim Il Sung University)

Abstract

A theoretical model of 工-shaped coupled-cavity waveguide with two quantum dots is proposed to realize the single photon router, where the two quantum dots are embedded in two nodes of two infinite coupled-cavity and a finite coupled-cavity waveguide respectively. Based on the discrete scattering equations, the routing properties such as transmission, reflection, and the transfer rate of the incident single photons are theoretically investigated. It is found that they can be controlled by various parameters such as the coupling strength between two quantum dots and three coupled-cavity waveguides, the transition energies of two quantum dots, wave vector, and the energy of the incident single photons, etc. Especially, when $$\omega_{e}^{(1)} = \omega_{e}^{(2)} = 10$$ ω e ( 1 ) = ω e ( 2 ) = 10 , in case of $$k = 2n{\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-0pt} 4}\,(n = 1,2,...)$$ k = 2 n π π 4 4 ( n = 1 , 2 , . . . ) ,the incident single photons have two symmetric peaks with relative to the resonant energy, but in case of $$k = (2n + 1){\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-0pt} 4}\,(n = 0,1,2,...)$$ k = ( 2 n + 1 ) π π 4 4 ( n = 0 , 1 , 2 , . . . ) , there appears only one transfer peak with blue or red shift due to the quantum interference between the two quantum dots. The tunable routing properties of the single photons in the 工-shape quantum router might have potential applications for future quantum devices. Graphical abstract

Suggested Citation

  • Myong-Chol Ko & Sung-Jin Kim & Nam-Chol Kim & Su-Ryon Ri & Ju-Song Ryom & Kang-Sa Yun & Chung-Song Jo, 2025. "Tunable routing properties of single photon interacting with two quantum dots in a quantum router with the工-type coupled cavity waveguide system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(8), pages 1-9, August.
  • Handle: RePEc:spr:eurphb:v:98:y:2025:i:8:d:10.1140_epjb_s10051-025-01017-x
    DOI: 10.1140/epjb/s10051-025-01017-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-025-01017-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-025-01017-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Neil V. Corzo & Jérémy Raskop & Aveek Chandra & Alexandra S. Sheremet & Baptiste Gouraud & Julien Laurat, 2019. "Waveguide-coupled single collective excitation of atomic arrays," Nature, Nature, vol. 566(7744), pages 359-362, February.
    2. Andrew J. Daley & Immanuel Bloch & Christian Kokail & Stuart Flannigan & Natalie Pearson & Matthias Troyer & Peter Zoller, 2022. "Practical quantum advantage in quantum simulation," Nature, Nature, vol. 607(7920), pages 667-676, July.
    3. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    4. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    8. Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
    9. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Zenghui Bao & Yan Li & Zhiling Wang & Jiahui Wang & Jize Yang & Haonan Xiong & Yipu Song & Yukai Wu & Hongyi Zhang & Luming Duan, 2024. "A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Grigory E. Astrakharchik & Luis A. Peña Ardila & Krzysztof Jachymski & Antonio Negretti, 2023. "Many-body bound states and induced interactions of charged impurities in a bosonic bath," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Llodrà, Guillem & Mujal, Pere & Zambrini, Roberta & Giorgi, Gian Luca, 2025. "Quantum reservoir computing in atomic lattices," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    16. Jie Qian & Qi Hong & Zi-Yuan Wang & Wen-Xin Wu & Yihao Yang & Can-Ming Hu & Jian-Qiang You & Yi-Pu Wang, 2025. "Unidirectional perfect absorption induced by chiral coupling in spin-momentum locked waveguide magnonics," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    17. Diego Ruiz & Jérémie Guillaud & Anthony Leverrier & Mazyar Mirrahimi & Christophe Vuillot, 2025. "LDPC-cat codes for low-overhead quantum computing in 2D," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Jiang, Min & Li, Hui & Zhang, Zeng-ke & Zeng, Jia, 2011. "Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 760-768.
    19. Tulio Brito Brasil & Valeriy Novikov & Hugo Kerdoncuff & Mikael Lassen & Eugene S. Polzik, 2022. "Two-colour high-purity Einstein-Podolsky-Rosen photonic state," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    20. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:98:y:2025:i:8:d:10.1140_epjb_s10051-025-01017-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.