IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33609-x.html
   My bibliography  Save this article

The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis

Author

Listed:
  • Marjolein Heddes

    (Technical University of Munich
    Technical University of Munich)

  • Baraa Altaha

    (Technical University of Munich
    Technical University of Munich)

  • Yunhui Niu

    (Technical University of Munich
    Technical University of Munich)

  • Sandra Reitmeier

    (Technical University of Munich
    Technical University of Munich)

  • Karin Kleigrewe

    (Technical University of Munich)

  • Dirk Haller

    (Technical University of Munich
    Technical University of Munich)

  • Silke Kiessling

    (Technical University of Munich
    Technical University of Munich
    University of Surrey)

Abstract

Diurnal (i.e., 24-hour) oscillations of the gut microbiome have been described in various species including mice and humans. However, the driving force behind these rhythms remains less clear. In this study, we differentiate between endogenous and exogenous time cues driving microbial rhythms. Our results demonstrate that fecal microbial oscillations are maintained in mice kept in the absence of light, supporting a role of the host’s circadian system rather than representing a diurnal response to environmental changes. Intestinal epithelial cell-specific ablation of the core clock gene Bmal1 disrupts rhythmicity of microbiota. Targeted metabolomics functionally link intestinal clock-controlled bacteria to microbial-derived products, in particular branched-chain fatty acids and secondary bile acids. Microbiota transfer from intestinal clock-deficient mice into germ-free mice altered intestinal gene expression, enhanced lymphoid organ weights and suppressed immune cell recruitment. These results highlight the importance of functional intestinal clocks for microbiota composition and function, which is required to balance the host’s gastrointestinal homeostasis.

Suggested Citation

  • Marjolein Heddes & Baraa Altaha & Yunhui Niu & Sandra Reitmeier & Karin Kleigrewe & Dirk Haller & Silke Kiessling, 2022. "The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33609-x
    DOI: 10.1038/s41467-022-33609-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33609-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33609-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shin Yoshimoto & Tze Mun Loo & Koji Atarashi & Hiroaki Kanda & Seidai Sato & Seiichi Oyadomari & Yoichiro Iwakura & Kenshiro Oshima & Hidetoshi Morita & Masahira Hattori & Kenya Honda & Yuichi Ishikaw, 2013. "Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome," Nature, Nature, vol. 499(7456), pages 97-101, July.
    2. Xiaojiao Zheng & Tianlu Chen & Aihua Zhao & Zhangchi Ning & Junliang Kuang & Shouli Wang & Yijun You & Yuqian Bao & Xiaojing Ma & Haoyong Yu & Jian Zhou & Miao Jiang & Mengci Li & Jieyi Wang & Xiaohui, 2021. "Hyocholic acid species as novel biomarkers for metabolic disorders," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Theresa Alenghat & Lisa C. Osborne & Steven A. Saenz & Dmytro Kobuley & Carly G. K. Ziegler & Shannon E. Mullican & Inchan Choi & Stephanie Grunberg & Rohini Sinha & Meghan Wynosky-Dolfi & Annelise Sn, 2013. "Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis," Nature, Nature, vol. 504(7478), pages 153-157, December.
    4. Peter J. Turnbaugh & Ruth E. Ley & Michael A. Mahowald & Vincent Magrini & Elaine R. Mardis & Jeffrey I. Gordon, 2006. "An obesity-associated gut microbiome with increased capacity for energy harvest," Nature, Nature, vol. 444(7122), pages 1027-1031, December.
    5. Shu-en Wu & Seika Hashimoto-Hill & Vivienne Woo & Emily M. Eshleman & Jordan Whitt & Laura Engleman & Rebekah Karns & Lee A. Denson & David B. Haslam & Theresa Alenghat, 2020. "Microbiota-derived metabolite promotes HDAC3 activity in the gut," Nature, Nature, vol. 586(7827), pages 108-112, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotaro Soeda & Takayoshi Sasako & Kenichiro Enooku & Naoto Kubota & Naoki Kobayashi & Yoshiko Matsumoto Ikushima & Motoharu Awazawa & Ryotaro Bouchi & Gotaro Toda & Tomoharu Yamada & Takuma Nakatsuka , 2023. "Gut insulin action protects from hepatocarcinogenesis in diabetic mice comorbid with nonalcoholic steatohepatitis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Doratha A Byrd & Jun Chen & Emily Vogtmann & Autumn Hullings & Se Jin Song & Amnon Amir & Muhammad G Kibriya & Habibul Ahsan & Yu Chen & Heidi Nelson & Rob Knight & Jianxin Shi & Nicholas Chia & Rashm, 2019. "Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
    3. Kiran Konain & Sadia & Turfa Nadeem & Adeed Khan & Warda Iqbal & Arsalan & Amir Javed & Ruby Khan & Kainat Jamil & Kainat Jamil, 2018. "Importance of Probiotics in Gastrointestinal Tract," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(3), pages 128-143, March.
    4. Mariana F. Fernández & Iris Reina-Pérez & Juan Manuel Astorga & Andrea Rodríguez-Carrillo & Julio Plaza-Díaz & Luis Fontana, 2018. "Breast Cancer and Its Relationship with the Microbiota," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    5. Hui Xia & Beijia Zhou & Jing Sui & Wenqing Ma & Shaokang Wang & Ligang Yang & Guiju Sun, 2022. "Lycium barbarum Polysaccharide Regulates the Lipid Metabolism and Alters Gut Microbiota in High-Fat Diet Induced Obese Mice," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    6. Davillas, Apostolos & Pudney, Stephen, 2016. "Concordance of health states in couples. Analysis of self-reported, nurse administered and blood-based biomarker data in Understanding Society," ISER Working Paper Series 2016-15, Institute for Social and Economic Research.
    7. Vinod Nikhra, 2019. "Therapeutic Potential of Gut Microbiome Manipulation: Concepts in Fecal Microbiota Transplantation," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 1-9, June.
    8. Cristiane R. S. Câmara & Carlos A. Urrea & Vicki Schlegel, 2013. "Pinto Beans ( Phaseolus vulgaris L.) as a Functional Food: Implications on Human Health," Agriculture, MDPI, vol. 3(1), pages 1-22, February.
    9. Vinod Nikhra, 2019. "The Novel Dimensions of Cardio-Metabolic Health Gut Microbiota, Dysbiosis and its Fallouts," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 28-37, June.
    10. Shinji Fukuda & Yumiko Nakanishi & Eisuke Chikayama & Hiroshi Ohno & Tsuneo Hino & Jun Kikuchi, 2009. "Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-10, March.
    11. James Robert White & Niranjan Nagarajan & Mihai Pop, 2009. "Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-11, April.
    12. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    13. Jing Zhong & Xiaofang He & Xinxin Gao & Qiaohong Liu & Yu Zhao & Ying Hong & Weize Zhu & Juan Yan & Yifan Li & Yan Li & Ningning Zheng & Yiyang Bao & Hao Wang & Junli Ma & Wenjin Huang & Zekun Liu & Y, 2023. "Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Karen D. Corbin & Elvis A. Carnero & Blake Dirks & Daria Igudesman & Fanchao Yi & Andrew Marcus & Taylor L. Davis & Richard E. Pratley & Bruce E. Rittmann & Rosa Krajmalnik-Brown & Steven R. Smith, 2023. "Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Michael DiMarzio & Brigida Rusconi & Neela H Yennawar & Mark Eppinger & Andrew D Patterson & Edward G Dudley, 2017. "Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    16. Hanan H. Wahid & Ayesha Bahez & Mohammed I. A. Mustafa Mahmud & Farih N. Hashim & Norhidayah Kamarudin & Roesnita Baharuddin & Ahmad M. Ahmad Mustafa & Hamizah Ismail, 2022. "Maternal Risk Factors For Group B Streptococcus (Gbs) Vaginal Colonization," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 6(2), pages 55-58, August.
    17. Tamar Ringel-Kulka & Jing Cheng & Yehuda Ringel & Jarkko Salojärvi & Ian Carroll & Airi Palva & Willem M de Vos & Reetta Satokari, 2013. "Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    18. Hannah Lees & Jonathan Swann & Simon M Poucher & Jeremy K Nicholson & Elaine Holmes & Ian D Wilson & Julian R Marchesi, 2014. "Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    19. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Liat Shenhav & Ori Furman & Leah Briscoe & Mike Thompson & Justin D Silverman & Itzhak Mizrahi & Eran Halperin, 2019. "Modeling the temporal dynamics of the gut microbial community in adults and infants," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33609-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.