IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32178-3.html
   My bibliography  Save this article

Selective separation of light rare-earth elements by supramolecular encapsulation and precipitation

Author

Listed:
  • Joseph G. O’Connell-Danes

    (University of Edinburgh)

  • Bryne T. Ngwenya

    (University of Edinburgh)

  • Carole A. Morrison

    (University of Edinburgh)

  • Jason B. Love

    (University of Edinburgh)

Abstract

Supramolecular chemical strategies for Rare Earth (RE) element separations are emerging which amplify the small changes in properties across the series to bias selectivity in extraction or precipitation. These advances are important as the REs are crucial to modern technologies yet their extraction, separation, and recycling using conventional techniques remain challenging. We report here a pre-organised triamidoarene platform which, under acidic, biphasic conditions, uniquely and selectively precipitates light RE nitratometalates as supramolecular capsules. The capsules exhibit both intra- and intermolecular hydrogen bonds that dictate selectivity, promote precipitation, and facilitate the straightforward release of the RE and recycling of the receptor. This work provides a self-assembly route to metal separations that exploits size and shape complementarity and has the potential to integrate into conventional processes due to its compatibility with acidic metal feed streams.

Suggested Citation

  • Joseph G. O’Connell-Danes & Bryne T. Ngwenya & Carole A. Morrison & Jason B. Love, 2022. "Selective separation of light rare-earth elements by supramolecular encapsulation and precipitation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32178-3
    DOI: 10.1038/s41467-022-32178-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32178-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32178-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luke M. M. Kinsman & Bryne T. Ngwenya & Carole A. Morrison & Jason B. Love, 2021. "Tuneable separation of gold by selective precipitation using a simple and recyclable diamide," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Xiao-Zhen Li & Li-Peng Zhou & Liang-Liang Yan & Ya-Min Dong & Zhuan-Ling Bai & Xiao-Qi Sun & Juan Diwu & Shuao Wang & Jean-Claude Bünzli & Qing-Fu Sun, 2018. "A supramolecular lanthanide separation approach based on multivalent cooperative enhancement of metal ion selectivity," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    4. Opare, Emmanuel Ohene & Struhs, Ethan & Mirkouei, Amin, 2021. "A comparative state-of-technology review and future directions for rare earth element separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Xuemiao Yin & Yaxing Wang & Xiaojing Bai & Yumin Wang & Lanhua Chen & Chengliang Xiao & Juan Diwu & Shiyu Du & Zhifang Chai & Thomas E. Albrecht-Schmitt & Shuao Wang, 2017. "Rare earth separations by selective borate crystallization," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang Wu & Yu Wang & Chun Tang & Leighton O. Jones & Bo Song & Xiao-Yang Chen & Long Zhang & Yong Wu & Charlotte L. Stern & George C. Schatz & Wenqi Liu & J. Fraser Stoddart, 2023. "High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing-Hua Hu & An-Min Song & Xin Gao & Yu-Zhen Shi & Wei Jiang & Ru-Ping Liang & Jian-Ding Qiu, 2024. "Rationally designed nanotrap structures for efficient separation of rare earth elements over a single step," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Huang Wu & Yu Wang & Chun Tang & Leighton O. Jones & Bo Song & Xiao-Yang Chen & Long Zhang & Yong Wu & Charlotte L. Stern & George C. Schatz & Wenqi Liu & J. Fraser Stoddart, 2023. "High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Kumar, Anil & Shemi, Alan & Chipise, Liberty & Moodley, Sanchia & Yah, Clarence S. & Ndlovu, Sehliselo, 2023. "Can microbial Bio-CN be a sustainable alternative to the chemical cyanidation of precious metals? An update and way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Fei Li & Jiuyi Zhu & Pengzhan Sun & Mingrui Zhang & Zhenqing Li & Dingxin Xu & Xinyu Gong & Xiaolong Zou & A. K. Geim & Yang Su & Hui-Ming Cheng, 2022. "Highly efficient and selective extraction of gold by reduced graphene oxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    7. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    8. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Bruno Franco & Lieven Clarisse & Martin Van Damme & Juliette Hadji-Lazaro & Cathy Clerbaux & Pierre-François Coheur, 2022. "Ethylene industrial emitters seen from space," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. de Oliveira, R.P. & Benvenuti, J. & Espinosa, D.C.R., 2021. "A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Qingju Wang & Lifeng Yang & Tian Ke & Jianbo Hu & Xian Suo & Xili Cui & Huabin Xing, 2024. "Selective sorting of hexane isomers by anion-functionalized metal-organic frameworks with optimal energy regulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Yunjia Jiang, & Yongqi Hu, & Binquan Luan, & Lingyao Wang, & Rajamani Krishna, & Haofei Ni, & Xin Hu & Yuanbin Zhang, 2023. "Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Yisa Zhou & Ying Wu & Haoyu Wu & Jian Xue & Li Ding & Rui Wang & Haihui Wang, 2022. "Fast hydrogen purification through graphitic carbon nitride nanosheet membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Young Joo Lee & Lihua Chen & Janhavi Nistane & Hye Youn Jang & Dylan J. Weber & Joseph K. Scott & Neel D. Rangnekar & Bennett D. Marshall & Wenjun Li & J. R. Johnson & Nicholas C. Bruno & M. G. Finn &, 2023. "Data-driven predictions of complex organic mixture permeation in polymer membranes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Brown, Rebecca M. & Mirkouei, Amin & Reed, David & Thompson, Vicki, 2023. "Current nature-based biological practices for rare earth elements extraction and recovery: Bioleaching and biosorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    20. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32178-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.