IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31893-1.html
   My bibliography  Save this article

Actuating compact wearable augmented reality devices by multifunctional artificial muscle

Author

Listed:
  • Dongjin Kim

    (Ajou University)

  • Baekgyeom Kim

    (Ajou University)

  • Bongsu Shin

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Samsung Electronics)

  • Dongwook Shin

    (Ajou University)

  • Chang-Kun Lee

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Samsung Electronics)

  • Jae-Seung Chung

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Samsung Electronics)

  • Juwon Seo

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Samsung Electronics)

  • Yun-Tae Kim

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Samsung Electronics)

  • Geeyoung Sung

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Samsung Electronics)

  • Wontaek Seo

    (Samsung Advanced Institute of Technology, Samsung Electronics)

  • Sunil Kim

    (Samsung Advanced Institute of Technology, Samsung Electronics)

  • Sunghoon Hong

    (Samsung Advanced Institute of Technology, Samsung Electronics)

  • Sungwoo Hwang

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Samsung SDS)

  • Seungyong Han

    (Ajou University)

  • Daeshik Kang

    (Ajou University)

  • Hong-Seok Lee

    (Samsung Advanced Institute of Technology, Samsung Electronics
    Department of Electrical and Computer Engineering, Seoul National University)

  • Je-Sung Koh

    (Ajou University)

Abstract

An artificial muscle actuator resolves practical engineering problems in compact wearable devices, which are limited to conventional actuators such as electromagnetic actuators. Abstracting the fundamental advantages of an artificial muscle actuator provides a small-scale, high-power actuating system with a sensing capability for developing varifocal augmented reality glasses and naturally fit haptic gloves. Here, we design a shape memory alloy-based lightweight and high-power artificial muscle actuator, the so-called compliant amplified shape memory alloy actuator. Despite its light weight (0.22 g), the actuator has a high power density of 1.7 kW/kg, an actuation strain of 300% under 80 g of external payload. We show how the actuator enables image depth control and an immersive tactile response in the form of augmented reality glasses and two-way communication haptic gloves whose thin form factor and high power density can hardly be achieved by conventional actuators.

Suggested Citation

  • Dongjin Kim & Baekgyeom Kim & Bongsu Shin & Dongwook Shin & Chang-Kun Lee & Jae-Seung Chung & Juwon Seo & Yun-Tae Kim & Geeyoung Sung & Wontaek Seo & Sunil Kim & Sunghoon Hong & Sungwoo Hwang & Seungy, 2022. "Actuating compact wearable augmented reality devices by multifunctional artificial muscle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31893-1
    DOI: 10.1038/s41467-022-31893-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31893-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31893-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ho-Hsiu Chou & Amanda Nguyen & Alex Chortos & John W.F. To & Chien Lu & Jianguo Mei & Tadanori Kurosawa & Won-Gyu Bae & Jeffrey B.-H. Tok & Zhenan Bao, 2015. "A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    2. Oluwaseun A. Araromi & Moritz A. Graule & Kristen L. Dorsey & Sam Castellanos & Jonathan R. Foster & Wen-Hao Hsu & Arthur E. Passy & Joost J. Vlassak & James C. Weaver & Conor J. Walsh & Robert J. Woo, 2020. "Ultra-sensitive and resilient compliant strain gauges for soft machines," Nature, Nature, vol. 587(7833), pages 219-224, November.
    3. Zhenishbek Zhakypov & Kazuaki Mori & Koh Hosoda & Jamie Paik, 2019. "Designing minimal and scalable insect-inspired multi-locomotion millirobots," Nature, Nature, vol. 571(7765), pages 381-386, July.
    4. Xinge Yu & Zhaoqian Xie & Yang Yu & Jungyup Lee & Abraham Vazquez-Guardado & Haiwen Luan & Jasper Ruban & Xin Ning & Aadeel Akhtar & Dengfeng Li & Bowen Ji & Yiming Liu & Rujie Sun & Jingyue Cao & Qin, 2019. "Skin-integrated wireless haptic interfaces for virtual and augmented reality," Nature, Nature, vol. 575(7783), pages 473-479, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Shaomei Lin & Weifeng Yang & Xubin Zhu & Yubin Lan & Kerui Li & Qinghong Zhang & Yaogang Li & Chengyi Hou & Hongzhi Wang, 2024. "Triboelectric micro-flexure-sensitive fiber electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Bekir Aksoy & Yufei Hao & Giulio Grasso & Krishna Manaswi Digumarti & Vito Cacucciolo & Herbert Shea, 2022. "Shielded soft force sensors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yuan Zhang & Junlong Yang & Xingyu Hou & Gang Li & Liu Wang & Ningning Bai & Minkun Cai & Lingyu Zhao & Yan Wang & Jianming Zhang & Ke Chen & Xiang Wu & Canhui Yang & Yuan Dai & Zhengyou Zhang & Chuan, 2022. "Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Shuzhi Liu & Jianmin Zeng & Zhixin Wu & Han Hu & Ao Xu & Xiaohe Huang & Weilin Chen & Qilai Chen & Zhe Yu & Yinyu Zhao & Rong Wang & Tingting Han & Chao Li & Pingqi Gao & Hyunwoo Kim & Seung Jae Baik , 2023. "An ultrasmall organic synapse for neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Jinfeng Liu & Xiangyu Gao & Haonan Jin & Kaile Ren & Jingyu Guo & Liao Qiao & Chaorui Qiu & Wei Chen & Yuhang He & Shuxiang Dong & Zhuo Xu & Fei Li, 2022. "Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Qiji Ze & Shuai Wu & Jize Dai & Sophie Leanza & Gentaro Ikeda & Phillip C. Yang & Gianluca Iaccarino & Ruike Renee Zhao, 2022. "Spinning-enabled wireless amphibious origami millirobot," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Rui Chen & Zean Yuan & Jianglong Guo & Long Bai & Xinyu Zhu & Fuqiang Liu & Huayan Pu & Liming Xin & Yan Peng & Jun Luo & Li Wen & Yu Sun, 2021. "Legless soft robots capable of rapid, continuous, and steered jumping," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    17. Jian Li & Huiling Jia & Jingkun Zhou & Xingcan Huang & Long Xu & Shengxin Jia & Zhan Gao & Kuanming Yao & Dengfeng Li & Binbin Zhang & Yiming Liu & Ya Huang & Yue Hu & Guangyao Zhao & Zitong Xu & Jiyu, 2023. "Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Jinyuan Zhang & Kyunghun Kim & Ho Joong Kim & Dawn Meyer & Woohyun Park & Seul Ah Lee & Yumin Dai & Bongjoong Kim & Haesoo Moon & Jay V. Shah & Keely E. Harris & Brett Collar & Kangying Liu & Pedro Ir, 2022. "Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31893-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.