IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30802-w.html
   My bibliography  Save this article

Spinning-enabled wireless amphibious origami millirobot

Author

Listed:
  • Qiji Ze

    (Stanford University)

  • Shuai Wu

    (Stanford University)

  • Jize Dai

    (Stanford University)

  • Sophie Leanza

    (Stanford University)

  • Gentaro Ikeda

    (Stanford University School of Medicine)

  • Phillip C. Yang

    (Stanford University School of Medicine)

  • Gianluca Iaccarino

    (Stanford University
    Stanford University)

  • Ruike Renee Zhao

    (Stanford University)

Abstract

Wireless millimeter-scale origami robots have recently been explored with great potential for biomedical applications. Existing millimeter-scale origami devices usually require separate geometrical components for locomotion and functions. Additionally, none of them can achieve both on-ground and in-water locomotion. Here we report a magnetically actuated amphibious origami millirobot that integrates capabilities of spinning-enabled multimodal locomotion, delivery of liquid medicine, and cargo transportation with wireless operation. This millirobot takes full advantage of the geometrical features and folding/unfolding capability of Kresling origami, a triangulated hollow cylinder, to fulfill multifunction: its geometrical features are exploited for generating omnidirectional locomotion in various working environments through rolling, flipping, and spinning-induced propulsion; the folding/unfolding is utilized as a pumping mechanism for controlled delivery of liquid medicine; furthermore, the spinning motion provides a sucking mechanism for targeted solid cargo transportation. We anticipate the amphibious origami millirobots can potentially serve as minimally invasive devices for biomedical diagnoses and treatments.

Suggested Citation

  • Qiji Ze & Shuai Wu & Jize Dai & Sophie Leanza & Gentaro Ikeda & Phillip C. Yang & Gianluca Iaccarino & Ruike Renee Zhao, 2022. "Spinning-enabled wireless amphibious origami millirobot," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30802-w
    DOI: 10.1038/s41467-022-30802-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30802-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30802-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenishbek Zhakypov & Kazuaki Mori & Koh Hosoda & Jamie Paik, 2019. "Designing minimal and scalable insect-inspired multi-locomotion millirobots," Nature, Nature, vol. 571(7765), pages 381-386, July.
    2. Jizhai Cui & Tian-Yun Huang & Zhaochu Luo & Paolo Testa & Hongri Gu & Xiang-Zhong Chen & Bradley J. Nelson & Laura J. Heyderman, 2019. "Nanomagnetic encoding of shape-morphing micromachines," Nature, Nature, vol. 575(7781), pages 164-168, November.
    3. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    4. Haojian Lu & Mei Zhang & Yuanyuan Yang & Qiang Huang & Toshio Fukuda & Zuankai Wang & Yajing Shen, 2018. "A bioinspired multilegged soft millirobot that functions in both dry and wet conditions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziheng Chen & Yibin Wang & Hui Chen & Junhui Law & Huayan Pu & Shaorong Xie & Feng Duan & Yu Sun & Na Liu & Jiangfan Yu, 2024. "A magnetic multi-layer soft robot for on-demand targeted adhesion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Xiaohao Sun & Liang Yue & Luxia Yu & Connor T. Forte & Connor D. Armstrong & Kun Zhou & Frédéric Demoly & Ruike Renee Zhao & H. Jerry Qi, 2024. "Machine learning-enabled forward prediction and inverse design of 4D-printed active plates," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Hun Chan Lee & Nash Elder & Matthew Leal & Sarah Stantial & Elenis Vergara Martinez & Sneha Jos & Hyunje Cho & Sheila Russo, 2024. "A fabrication strategy for millimeter-scale, self-sensing soft-rigid hybrid robots," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yuxuan Sun & Wang Zhang & Junnan Gu & Liangyu Xia & Yinghao Cao & Xinhui Zhu & Hao Wen & Shaowei Ouyang & Ruiqi Liu & Jialong Li & Zhenxing Jiang & Denglong Cheng & Yiliang Lv & Xiaotao Han & Wu Qiu &, 2024. "Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Haitao Yang & Shuo Ding & Jiahao Wang & Shuo Sun & Ruphan Swaminathan & Serene Wen Ling Ng & Xinglong Pan & Ghim Wei Ho, 2024. "Computational design of ultra-robust strain sensors for soft robot perception and autonomy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xingxing Ke & Haochen Yong & Fukang Xu & Han Ding & Zhigang Wu, 2024. "Stenus-inspired, swift, and agile untethered insect-scale soft propulsors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Rui Chen & Zean Yuan & Jianglong Guo & Long Bai & Xinyu Zhu & Fuqiang Liu & Huayan Pu & Liming Xin & Yan Peng & Jun Luo & Li Wen & Yu Sun, 2021. "Legless soft robots capable of rapid, continuous, and steered jumping," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Xiong Yang & Rong Tan & Haojian Lu & Toshio Fukuda & Yajing Shen, 2022. "Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Siqi An & Xiaowen Li & Zengrong Guo & Yi Huang & Yanlin Zhang & Hanqing Jiang, 2024. "Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Jinfeng Liu & Xiangyu Gao & Haonan Jin & Kaile Ren & Jingyu Guo & Liao Qiao & Chaorui Qiu & Wei Chen & Yuhang He & Shuxiang Dong & Zhuo Xu & Fei Li, 2022. "Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Yubing Guo & Jiachen Zhang & Wenqi Hu & Muhammad Turab Ali Khan & Metin Sitti, 2021. "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    17. Yamei Li & Yingxin Huo & Xiangyu Chu & Lidong Yang, 2024. "Automated Magnetic Microrobot Control: From Mathematical Modeling to Machine Learning," Mathematics, MDPI, vol. 12(14), pages 1-19, July.
    18. Ren Hao Soon & Zhen Yin & Metin Alp Dogan & Nihal Olcay Dogan & Mehmet Efe Tiryaki & Alp Can Karacakol & Asli Aydin & Pouria Esmaeili-Dokht & Metin Sitti, 2023. "Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Ziheng Chen & Yibin Wang & Hui Chen & Junhui Law & Huayan Pu & Shaorong Xie & Feng Duan & Yu Sun & Na Liu & Jiangfan Yu, 2024. "A magnetic multi-layer soft robot for on-demand targeted adhesion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Serena Arnaboldi & Gerardo Salinas & Sabrina Bichon & Sebastien Gounel & Nicolas Mano & Alexander Kuhn, 2023. "Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30802-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.