IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31361-w.html
   My bibliography  Save this article

Photo-tailored heterocrystalline covalent organic framework membranes for organics separation

Author

Listed:
  • Jinqiu Yuan

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Xinda You

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Niaz Ali Khan

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Runlai Li

    (National University of Singapore)

  • Runnan Zhang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Zhejiang Institute of Tianjin University)

  • Jianliang Shen

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Li Cao

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Mengying Long

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    International Campus of Tianjin University)

  • Yanan Liu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Zijian Xu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Hong Wu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Tianjin University)

  • Zhongyi Jiang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Zhejiang Institute of Tianjin University
    International Campus of Tianjin University)

Abstract

Organics separation for purifying and recycling environment-detrimental solvents is essential to sustainable chemical industries. Covalent organic framework (COF) membranes hold great promise in affording precise and fast organics separation. Nonetheless, how to well coordinate facile processing—high crystalline structure—high separation performance remains a critical issue and a grand challenge. Herein, we propose a concept of heterocrystalline membrane which comprises high-crystalline regions and low-crystalline regions. The heterocrystalline COF membranes are fabricated by a two-step procedure, i.e., dark reaction for the construction of high-crystalline regions followed by photo reaction for the construction of low-crystalline regions, thus linking the high-crystalline regions tightly and flexibly, blocking the defect in high-crystalline regions. Accordingly, the COF membrane exhibits sharp molecular sieving properties with high organic solvent permeance up to 44-times higher than the state-of-the-art membranes.

Suggested Citation

  • Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31361-w
    DOI: 10.1038/s41467-022-31361-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31361-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31361-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Yang & Jinhui Xu & Hui Cao & Jie Wu & Dan Zhao, 2023. "Recovery of homogeneous photocatalysts by covalent organic framework membranes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jingqi Wang & Jiapeng Liu & Hongshuai Wang & Musen Zhou & Guolin Ke & Linfeng Zhang & Jianzhong Wu & Zhifeng Gao & Diannan Lu, 2024. "A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xueru Yan & Tianqi Song & Min Li & Zhi Wang & Xinlei Liu, 2024. "Sub-micro porous thin polymer membranes for discriminating H2 and CO2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Letitia Petrescu & Codruta-Maria Cormos, 2022. "Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment," Energies, MDPI, vol. 15(21), pages 1-23, October.
    6. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    8. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    9. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Fu, Pengbo & Yu, Hao & Li, Qiqi & Cheng, Tingting & Zhang, Fangzheng & Yang, Tao & Huang, Yuan & Li, Jianping & Fang, Xiangchen & Xiu, Guangli & Wang, Hualin, 2022. "Cyclone rotational drying of lignite based on particle high-speed self-rotation: Lower carrier gas temperature and shorter residence time," Energy, Elsevier, vol. 244(PB).
    12. Bruno Franco & Lieven Clarisse & Martin Van Damme & Juliette Hadji-Lazaro & Cathy Clerbaux & Pierre-François Coheur, 2022. "Ethylene industrial emitters seen from space," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Christopher J. Hartwick & Eric W. Reinheimer & Leonard R. MacGillivray, 2024. "A molecular T-pentomino for separating BTEX hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Enyu Wu & Xiao-Wen Gu & Di Liu & Xu Zhang & Hui Wu & Wei Zhou & Guodong Qian & Bin Li, 2023. "Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Banseok Oh & Hyeokjun Seo & Jihoon Choi & Sunggyu Lee & Dong-Yeun Koh, 2022. "Electron-mediated control of nanoporosity for targeted molecular separation in carbon membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Qingju Wang & Lifeng Yang & Tian Ke & Jianbo Hu & Xian Suo & Xili Cui & Huabin Xing, 2024. "Selective sorting of hexane isomers by anion-functionalized metal-organic frameworks with optimal energy regulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Tanmoy Maity & Pratibha Malik & Sumit Bawari & Soumya Ghosh & Jagannath Mondal & Ritesh Haldar, 2023. "Chemically routed interpore molecular diffusion in metal-organic framework thin films," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Yunjia Jiang, & Yongqi Hu, & Binquan Luan, & Lingyao Wang, & Rajamani Krishna, & Haofei Ni, & Xin Hu & Yuanbin Zhang, 2023. "Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31361-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.