IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31155-0.html
   My bibliography  Save this article

The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors

Author

Listed:
  • Lina Liu

    (McMaster University
    McMaster University
    University of Toronto
    University Health Network)

  • Ana Vujovic

    (University of Toronto
    University Health Network)

  • Nandan P. Deshpande

    (University of New South Wales
    University of New South Wales)

  • Shashank Sathe

    (University of California at San Diego)

  • Govardhan Anande

    (University of New South Wales
    University of New South Wales)

  • He Tian Tony Chen

    (McMaster University
    University Health Network)

  • Joshua Xu

    (McMaster University
    University Health Network)

  • Mark D. Minden

    (University of Toronto
    University Health Network)

  • Gene W. Yeo

    (University of California at San Diego)

  • Ashwin Unnikrishnan

    (University of New South Wales
    University of New South Wales)

  • Kristin J. Hope

    (University of Toronto
    University Health Network)

  • Yu Lu

    (McMaster University)

Abstract

Chemo-resistance in acute myeloid leukemia (AML) patients is driven by leukemic stem cells (LSCs) resulting in high rates of relapse and low overall survival. Here, we demonstrate that upregulation of the splicing factor, RBM17 preferentially marks and sustains LSCs and directly correlates with shorten patient survival. RBM17 knockdown in primary AML cells leads to myeloid differentiation and impaired colony formation and in vivo engraftment. Integrative multi-omics analyses show that RBM17 repression leads to inclusion of poison exons and production of nonsense-mediated decay (NMD)-sensitive transcripts for pro-leukemic factors and the translation initiation factor, EIF4A2. We show that EIF4A2 is enriched in LSCs and its inhibition impairs primary AML progenitor activity. Proteomic analysis of EIF4A2-depleted AML cells shows recapitulation of the RBM17 knockdown biological effects, including pronounced suppression of proteins involved in ribosome biogenesis. Overall, these results provide a rationale to target RBM17 and/or its downstream NMD-sensitive splicing substrates for AML treatment.

Suggested Citation

  • Lina Liu & Ana Vujovic & Nandan P. Deshpande & Shashank Sathe & Govardhan Anande & He Tian Tony Chen & Joshua Xu & Mark D. Minden & Gene W. Yeo & Ashwin Unnikrishnan & Kristin J. Hope & Yu Lu, 2022. "The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31155-0
    DOI: 10.1038/s41467-022-31155-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31155-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31155-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric T. Wang & Rickard Sandberg & Shujun Luo & Irina Khrebtukova & Lu Zhang & Christine Mayr & Stephen F. Kingsmore & Gary P. Schroth & Christopher B. Burge, 2008. "Alternative isoform regulation in human tissue transcriptomes," Nature, Nature, vol. 456(7221), pages 470-476, November.
    2. Kazuhiro Fukumura & Rei Yoshimoto & Luca Sperotto & Hyun-Seo Kang & Tetsuro Hirose & Kunio Inoue & Michael Sattler & Akila Mayeda, 2021. "SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Ying Ge & Mikkel Bruhn Schuster & Sachin Pundhir & Nicolas Rapin & Frederik Otzen Bagger & Nikos Sidiropoulos & Nadia Hashem & Bo Torben Porse, 2019. "The splicing factor RBM25 controls MYC activity in acute myeloid leukemia," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Jeffrey W. Tyner & Cristina E. Tognon & Daniel Bottomly & Beth Wilmot & Stephen E. Kurtz & Samantha L. Savage & Nicola Long & Anna Reister Schultz & Elie Traer & Melissa Abel & Anupriya Agarwal & Auro, 2018. "Functional genomic landscape of acute myeloid leukaemia," Nature, Nature, vol. 562(7728), pages 526-531, October.
    5. Simon Raffel & Mattia Falcone & Niclas Kneisel & Jenny Hansson & Wei Wang & Christoph Lutz & Lars Bullinger & Gernot Poschet & Yannic Nonnenmacher & Andrea Barnert & Carsten Bahr & Petra Zeisberger & , 2017. "BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation," Nature, Nature, vol. 551(7680), pages 384-388, November.
    6. Brett M. Stevens & Nabilah Khan & Angelo D’Alessandro & Travis Nemkov & Amanda Winters & Courtney L. Jones & Wei Zhang & Daniel A. Pollyea & Craig T. Jordan, 2018. "Characterization and targeting of malignant stem cells in patients with advanced myelodysplastic syndromes," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    7. Namyoung Jung & Bo Dai & Andrew J. Gentles & Ravindra Majeti & Andrew P. Feinberg, 2015. "An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
    8. Tannishtha Reya & Sean J. Morrison & Michael F. Clarke & Irving L. Weissman, 2001. "Stem cells, cancer, and cancer stem cells," Nature, Nature, vol. 414(6859), pages 105-111, November.
    9. Fran Supek & Matko Bošnjak & Nives Škunca & Tomislav Šmuc, 2011. "REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeinab Tavasoli & Parviz Abdolmaleki & Seyed Javad Mowla & Faezeh Ghanati & Amir Sabet Sarvestani, 2009. "Investigation of the effects of static magnetic field on apoptosis in bone marrow stem cells of rat," Environment Systems and Decisions, Springer, vol. 29(2), pages 220-224, June.
    2. Gustavo Glusman & Juan Caballero & Max Robinson & Burak Kutlu & Leroy Hood, 2013. "Optimal Scaling of Digital Transcriptomes," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    3. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    4. Elizabeth Heyes & Anna S. Wilhelmson & Anne Wenzel & Gabriele Manhart & Thomas Eder & Mikkel B. Schuster & Edwin Rzepa & Sachin Pundhir & Teresa D’Altri & Anne-Katrine Frank & Coline Gentil & Jakob Wo, 2023. "TET2 lesions enhance the aggressiveness of CEBPA-mutant acute myeloid leukemia by rebalancing GATA2 expression," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    6. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Rachel A. Steward & Maaike A. de Jong & Vicencio Oostra & Christopher W. Wheat, 2022. "Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Siegmund Kimberly D. & Marjoram Paul & Shibata Darryl, 2008. "Modeling DNA Methylation in a Population of Cancer Cells," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-23, June.
    9. Meacci, Luca & Primicerio, Mario & Buscaglia, Gustavo Carlos, 2021. "Growth of tumours with stem cells: The effect of crowding and ageing of cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    10. Rebecca Anderson & Lance D. Miller & Scott Isom & Jeff W. Chou & Kristin M. Pladna & Nathaniel J. Schramm & Leslie R. Ellis & Dianna S. Howard & Rupali R. Bhave & Megan Manuel & Sarah Dralle & Susan L, 2022. "Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Patricia González-Rodríguez & Daniel J. Klionsky & Bertrand Joseph, 2022. "Autophagy regulation by RNA alternative splicing and implications in human diseases," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Shuyan Liu & Chengfei Liu & Xiaoyun Min & Yuanyuan Ji & Na Wang & Dan Liu & Jiangyi Cai & Ke Li, 2013. "Prognostic Value of Cancer Stem Cell Marker Aldehyde Dehydrogenase in Ovarian Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    15. Yuki Furuta & Haruka Yamamoto & Takeshi Hirakawa & Akira Uemura & Margaret Anne Pelayo & Hideaki Iimura & Naoya Katagiri & Noriko Takeda-Kamiya & Kie Kumaishi & Makoto Shirakawa & Sumie Ishiguro & Yas, 2024. "Petal abscission is promoted by jasmonic acid-induced autophagy at Arabidopsis petal bases," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    16. Zimai Li & Bhoomika Bhat & Erik T. Frank & Thalita Oliveira-Honorato & Fumika Azuma & Valérie Bachmann & Darren J. Parker & Thomas Schmitt & Evan P. Economo & Yuko Ulrich, 2023. "Behavioural individuality determines infection risk in clonal ant colonies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Miklos Csuros & Igor B Rogozin & Eugene V Koonin, 2011. "A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-9, September.
    18. Nysia I George & John F Bowyer & Nathaniel M Crabtree & Ching-Wei Chang, 2015. "An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    19. Kristina M. Garske & Asha Kar & Caroline Comenho & Brunilda Balliu & David Z. Pan & Yash V. Bhagat & Gregory Rosenberg & Amogha Koka & Sankha Subhra Das & Zong Miao & Janet S. Sinsheimer & Jaakko Kapr, 2023. "Increased body mass index is linked to systemic inflammation through altered chromatin co-accessibility in human preadipocytes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Mathew Pette & Andrew Dimond & António M. Galvão & Steven J. Millership & Wilson To & Chiara Prodani & Gráinne McNamara & Ludovica Bruno & Alessandro Sardini & Zoe Webster & James McGinty & Paul M. W., 2022. "Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31155-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.