IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30954-9.html
   My bibliography  Save this article

Drought-exposure history increases complementarity between plant species in response to a subsequent drought

Author

Listed:
  • Yuxin Chen

    (Xiamen University
    University of Zürich
    Sun Yat-sen University)

  • Anja Vogel

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Leipzig University
    Friedrich Schiller University Jena)

  • Cameron Wagg

    (University of Zürich
    Agriculture and Agri-Food Canada)

  • Tianyang Xu

    (University of Zürich)

  • Maitane Iturrate-Garcia

    (University of Zürich
    Federal Institute of Metrology METAS)

  • Michael Scherer-Lorenzen

    (University of Freiburg)

  • Alexandra Weigelt

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Leipzig University)

  • Nico Eisenhauer

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Leipzig University)

  • Bernhard Schmid

    (University of Zürich
    Peking University)

Abstract

Growing threats from extreme climatic events and biodiversity loss have raised concerns about their interactive consequences for ecosystem functioning. Evidence suggests biodiversity can buffer ecosystem functioning during such climatic events. However, whether exposure to extreme climatic events will strengthen the biodiversity-dependent buffering effects for future generations remains elusive. We assess such transgenerational effects by exposing experimental grassland communities to eight recurrent summer droughts versus ambient conditions in the field. Seed offspring of 12 species are then subjected to a subsequent drought event in the glasshouse, grown individually, in monocultures or in 2-species mixtures. Comparing productivity between mixtures and monocultures, drought-selected plants show greater between-species complementarity than ambient-selected plants when recovering from the subsequent drought, causing stronger biodiversity effects on productivity and better recovery of drought-selected mixtures after the drought. These findings suggest exposure to recurrent climatic events can improve ecosystem responses to future events through transgenerational reinforcement of species complementarity.

Suggested Citation

  • Yuxin Chen & Anja Vogel & Cameron Wagg & Tianyang Xu & Maitane Iturrate-Garcia & Michael Scherer-Lorenzen & Alexandra Weigelt & Nico Eisenhauer & Bernhard Schmid, 2022. "Drought-exposure history increases complementarity between plant species in response to a subsequent drought," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30954-9
    DOI: 10.1038/s41467-022-30954-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30954-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30954-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc W. Schmid & Christian Heichinger & Diana Coman Schmid & Daniela Guthörl & Valeria Gagliardini & Rémy Bruggmann & Sirisha Aluri & Catharine Aquino & Bernhard Schmid & Lindsay A. Turnbull & Ueli Gr, 2018. "Contribution of epigenetic variation to adaptation in Arabidopsis," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Debra Zuppinger-Dingley & Bernhard Schmid & Jana S. Petermann & Varuna Yadav & Gerlinde B. De Deyn & Dan F. B. Flynn, 2014. "Selection for niche differentiation in plant communities increases biodiversity effects," Nature, Nature, vol. 515(7525), pages 108-111, November.
    3. Ary A. Hoffmann & Carla M. Sgrò, 2011. "Climate change and evolutionary adaptation," Nature, Nature, vol. 470(7335), pages 479-485, February.
    4. Andrea B. Pfisterer & Bernhard Schmid, 2002. "Diversity-dependent production can decrease the stability of ecosystem functioning," Nature, Nature, vol. 416(6876), pages 84-86, March.
    5. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    6. Forest Isbell & Dylan Craven & John Connolly & Michel Loreau & Bernhard Schmid & Carl Beierkuhnlein & T. Martijn Bezemer & Catherine Bonin & Helge Bruelheide & Enrica de Luca & Anne Ebeling & John N. , 2015. "Biodiversity increases the resistance of ecosystem productivity to climate extremes," Nature, Nature, vol. 526(7574), pages 574-577, October.
    7. Michel Loreau & Andy Hector, 2001. "Partitioning selection and complementarity in biodiversity experiments," Nature, Nature, vol. 412(6842), pages 72-76, July.
    8. Michel Loreau & Andy Hector, 2001. "Erratum: Partitioning selection and complementarity in biodiversity experiments," Nature, Nature, vol. 413(6855), pages 548-548, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaowen Yang & Masahiro Ryo & Julien Roy & Daniel R. Lammel & Max-Bernhard Ballhausen & Xin Jing & Xuefeng Zhu & Matthias C. Rillig, 2022. "Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Cameron Wagg & Christiane Roscher & Alexandra Weigelt & Anja Vogel & Anne Ebeling & Enrica Luca & Anna Roeder & Clemens Kleinspehn & Vicky M. Temperton & Sebastian T. Meyer & Michael Scherer-Lorenzen , 2022. "Biodiversity–stability relationships strengthen over time in a long-term grassland experiment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Samuel E. Wuest & Lukas Schulz & Surbhi Rana & Julia Frommelt & Merten Ehmig & Nuno D. Pires & Ueli Grossniklaus & Christian S. Hardtke & Ulrich Z. Hammes & Bernhard Schmid & Pascal A. Niklaus, 2023. "Single-gene resolution of diversity-driven overyielding in plant genotype mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Gabriela Woźniak & Monika Malicka & Jacek Kasztowski & Łukasz Radosz & Joanna Czarnecka & Jaco Vangronsveld & Dariusz Prostański, 2022. "How Important Are the Relations between Vegetation Diversity and Bacterial Functional Diversity for the Functioning of Novel Ecosystems?," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    6. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    9. Jonathan S. Lefcheck & Graham J. Edgar & Rick D. Stuart-Smith & Amanda E. Bates & Conor Waldock & Simon J. Brandl & Stuart Kininmonth & Scott D. Ling & J. Emmett Duffy & Douglas B. Rasher & Aneil F. A, 2021. "Species richness and identity both determine the biomass of global reef fish communities," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    11. D. G. Kapayou & E. M. Herrighty & C. Gish Hill & V. Cano Camacho & A. Nair & D. M. Winham & M. D. McDaniel, 2023. "Reuniting the Three Sisters: collaborative science with Native growers to improve soil and community health," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(1), pages 65-82, March.
    12. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. György Barabás & Christine Parent & Andrew Kraemer & Frederik Perre & Frederik Laender, 2022. "The evolution of trait variance creates a tension between species diversity and functional diversity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    15. Shan Luo & Richard P. Phillips & Insu Jo & Songlin Fei & Jingjing Liang & Bernhard Schmid & Nico Eisenhauer, 2023. "Higher productivity in forests with mixed mycorrhizal strategies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Barbosa, Lorena Oliveira & dos Santos, Juscelina Arcanjo & Gonçalves, Anny Francielly Ataide & Campoe, Otávio Camargo & Scolforo, José Roberto Soares & Scolforo, Henrique Ferraço, 2023. "Competition in forest plantations: Empirical and process-based modelling in pine and eucalypt plantations," Ecological Modelling, Elsevier, vol. 483(C).
    17. Dardonville, Manon & Urruty, Nicolas & Bockstaller, Christian & Therond, Olivier, 2020. "Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems," Agricultural Systems, Elsevier, vol. 184(C).
    18. Zhu, Shuang-Guo & Tao, Hong-Yan & Li, Wen-Bo & Zhou, Rui & Gui, Yan-Wen & Zhu, Li & Zhang, Xiao-Lin & Wang, Wei & Wang, Bao-Zhong & Mei, Fu-Jian & Zhu, Hao & Xiong, You-Cai, 2023. "Phosphorus availability mediates plant–plant interaction and field productivity in maize-grass pea intercropping system: Field experiment and its global validation," Agricultural Systems, Elsevier, vol. 205(C).
    19. Huicai Yang & Shuqin Zhao & Zhanfei Qin & Zhiguo Qi & Xinying Jiao & Zhen Li, 2024. "Differentiation of Carbon Sink Enhancement Potential in the Beijing–Tianjin–Hebei Region of China," Land, MDPI, vol. 13(3), pages 1-15, March.
    20. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30954-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.