IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30784-9.html
   My bibliography  Save this article

Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii

Author

Listed:
  • Guifang Lin

    (Kansas State University)

  • Hui Chen

    (Kansas State University)

  • Bin Tian

    (Kansas State University
    Research Triangle Park)

  • Sunish K. Sehgal

    (South Dakota State University)

  • Lovepreet Singh

    (University of Maryland)

  • Jingzhong Xie

    (Kansas State University
    Chinese Academy of Sciences)

  • Nidhi Rawat

    (University of Maryland)

  • Philomin Juliana

    (International Maize and Wheat Improvement Center (CIMMYT)
    Borlaug Institute for South Asia)

  • Narinder Singh

    (Kansas State University
    Bayer R&D Services LLC)

  • Sandesh Shrestha

    (Kansas State University)

  • Duane L. Wilson

    (Kansas State University)

  • Hannah Shult

    (Kansas State University)

  • Hyeonju Lee

    (Kansas State University)

  • Adam William Schoen

    (University of Maryland)

  • Vijay K. Tiwari

    (University of Maryland)

  • Ravi P. Singh

    (International Maize and Wheat Improvement Center (CIMMYT))

  • Mary J. Guttieri

    (Hard Winter Wheat Genetics Research Unit, USDA-ARS)

  • Harold N. Trick

    (Kansas State University)

  • Jesse Poland

    (Kansas State University
    King Abdullah University of Science and Technology (KAUST))

  • Robert L. Bowden

    (Hard Winter Wheat Genetics Research Unit, USDA-ARS)

  • Guihua Bai

    (Kansas State University
    Hard Winter Wheat Genetics Research Unit, USDA-ARS)

  • Bikram Gill

    (Kansas State University)

  • Sanzhen Liu

    (Kansas State University)

Abstract

The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.

Suggested Citation

  • Guifang Lin & Hui Chen & Bin Tian & Sunish K. Sehgal & Lovepreet Singh & Jingzhong Xie & Nidhi Rawat & Philomin Juliana & Narinder Singh & Sandesh Shrestha & Duane L. Wilson & Hannah Shult & Hyeonju L, 2022. "Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30784-9
    DOI: 10.1038/s41467-022-30784-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30784-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30784-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Mascher & Heidrun Gundlach & Axel Himmelbach & Sebastian Beier & Sven O. Twardziok & Thomas Wicker & Volodymyr Radchuk & Christoph Dockter & Pete E. Hedley & Joanne Russell & Micha Bayer & Luke, 2017. "A chromosome conformation capture ordered sequence of the barley genome," Nature, Nature, vol. 544(7651), pages 427-433, April.
    2. Cheng Yuan & Cui Li & Lijie Yan & Andrew O Jackson & Zhiyong Liu & Chenggui Han & Jialin Yu & Dawei Li, 2011. "A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    3. Ming-Cheng Luo & Yong Q. Gu & Daniela Puiu & Hao Wang & Sven O. Twardziok & Karin R. Deal & Naxin Huo & Tingting Zhu & Le Wang & Yi Wang & Patrick E. McGuire & Shuyang Liu & Hai Long & Ramesh K. Ramas, 2017. "Genome sequence of the progenitor of the wheat D genome Aegilops tauschii," Nature, Nature, vol. 551(7681), pages 498-502, November.
    4. Dadong Zhang & Robert L Bowden & Jianming Yu & Brett F Carver & Guihua Bai, 2014. "Association Analysis of Stem Rust Resistance in U.S. Winter Wheat," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    5. Markus C. Kolodziej & Jyoti Singla & Javier Sánchez-Martín & Helen Zbinden & Hana Šimková & Miroslava Karafiátová & Jaroslav Doležel & Julien Gronnier & Manuel Poretti & Gaétan Glauser & Wangsheng Zhu, 2021. "A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongna Li & Lei Hua & Shuqing Zhao & Ming Hao & Rui Song & Shuyong Pang & Yanna Liu & Hong Chen & Wenjun Zhang & Tao Shen & Jin-Ying Gou & Hailiang Mao & Guiping Wang & Xiaohua Hao & Jian Li & Baoxing, 2023. "Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miaomiao Li & Huaizhi Zhang & Huixin Xiao & Keyu Zhu & Wenqi Shi & Dong Zhang & Yong Wang & Lijun Yang & Qiuhong Wu & Jingzhong Xie & Yongxing Chen & Dan Qiu & Guanghao Guo & Ping Lu & Beibei Li & Lei, 2024. "A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Guotai Yu & Oadi Matny & Nicolas Champouret & Burkhard Steuernagel & Matthew J. Moscou & Inmaculada Hernández-Pinzón & Phon Green & Sadiye Hayta & Mark Smedley & Wendy Harwood & Ngonidzashe Kangara & , 2022. "Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Olga Afanasenko & Irina Rozanova & Anastasiia Gofman & Nina Lashina & Fluturë Novakazi & Nina Mironenko & Olga Baranova & Alexandr Zubkovich, 2022. "Validation of Molecular Markers of Barley Net Blotch Resistance Loci on Chromosome 3H for Marker-Assisted Selection," Agriculture, MDPI, vol. 12(4), pages 1-20, March.
    4. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    5. Habteab Goitom Gebremedhin & Yahui Li & Jinghuang Hu & Dan Qiu & Qiuhong Wu & Hongjun Zhang & Li Yang & Yang Zhou & Yijun Zhou & Zhiyong Liu & Peng Zhang & Hongjie Li, 2022. "Development of KASP and SSR Markers for PmQ , a Recessive Gene Conferring Powdery Mildew Resistance in Wheat Landrace Qingxinmai," Agriculture, MDPI, vol. 12(9), pages 1-10, August.
    6. Yi Liao & Juntao Wang & Zhangsheng Zhu & Yuanlong Liu & Jinfeng Chen & Yongfeng Zhou & Feng Liu & Jianjun Lei & Brandon S. Gaut & Bihao Cao & J. J. Emerson & Changming Chen, 2022. "The 3D architecture of the pepper genome and its relationship to function and evolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Stuart D. Desjardins & James Simmonds & Inna Guterman & Kostya Kanyuka & Amanda J. Burridge & Andrew J. Tock & Eugenio Sanchez-Moran & F. Chris H. Franklin & Ian R. Henderson & Keith J. Edwards & Cris, 2022. "FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Simone Scalabrin & Gabriele Magris & Mario Liva & Nicola Vitulo & Michele Vidotto & Davide Scaglione & Lorenzo Terra & Manuela Rosanna Ruosi & Luciano Navarini & Gloria Pellegrino & Jorge Carlos Berny, 2024. "A chromosome-scale assembly reveals chromosomal aberrations and exchanges generating genetic diversity in Coffea arabica germplasm," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Giorgia Capasso & Giorgia Santini & Mariagioia Petraretti & Sergio Esposito & Simone Landi, 2021. "Wild and Traditional Barley Genomic Resources as a Tool for Abiotic Stress Tolerance and Biotic Relations," Agriculture, MDPI, vol. 11(11), pages 1-15, November.
    10. Jessen V. Bredeson & Austin B. Mudd & Sofia Medina-Ruiz & Therese Mitros & Owen Kabnick Smith & Kelly E. Miller & Jessica B. Lyons & Sanjit S. Batra & Joseph Park & Kodiak C. Berkoff & Christopher Plo, 2024. "Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Mariam Amouzoune & Sajid Rehman & Rachid Benkirane & Swati Verma & Sanjaya Gyawali & Muamar Al-Jaboobi & Ramesh Pal Singh Verma & Zakaria Kehel & Ahmed Amri, 2022. "Genome-Wide Association Study of Leaf Rust Resistance at Seedling and Adult Plant Stages in a Global Barley Panel," Agriculture, MDPI, vol. 12(11), pages 1-26, November.
    12. Jian Jiao & Yichun Wang & Jonathan Nimal Selvaraj & Fuguo Xing & Yang Liu, 2015. "Barley Stripe Mosaic Virus (BSMV) Induced MicroRNA Silencing in Common Wheat (Triticum aestivum L.)," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
    13. Varvara Lukyanchikova & Miroslav Nuriddinov & Polina Belokopytova & Alena Taskina & Jiangtao Liang & Maarten J. M. F. Reijnders & Livio Ruzzante & Romain Feron & Robert M. Waterhouse & Yang Wu & Chunh, 2022. "Anopheles mosquitoes reveal new principles of 3D genome organization in insects," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    14. Jessen V. Bredeson & Jessica B. Lyons & Ibukun O. Oniyinde & Nneka R. Okereke & Olufisayo Kolade & Ikenna Nnabue & Christian O. Nwadili & Eva Hřibová & Matthew Parker & Jeremiah Nwogha & Shengqiang Sh, 2022. "Chromosome evolution and the genetic basis of agronomically important traits in greater yam," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Zijuan Li & Yuyun Zhang & Ci-Hang Ding & Yan Chen & Haoyu Wang & Jinyu Zhang & Songbei Ying & Meiyue Wang & Rongzhi Zhang & Jinyi Liu & Yilin Xie & Tengfei Tang & Huishan Diao & Luhuan Ye & Yili Zhuan, 2023. "LHP1-mediated epigenetic buffering of subgenome diversity and defense responses confers genome plasticity and adaptability in allopolyploid wheat," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30784-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.