Genome-assisted identification of wheat leaf rust resistance gene Lr.ace-4A/Lr30
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-64428-5
Download full text from publisher
References listed on IDEAS
- Valentina Klymiuk & Elitsur Yaniv & Lin Huang & Dina Raats & Andrii Fatiukha & Shisheng Chen & Lihua Feng & Zeev Frenkel & Tamar Krugman & Gabriel Lidzbarsky & Wei Chang & Marko J. Jääskeläinen & Chri, 2018. "Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
- Xiaopeng Ren & Chuyuan Wang & Zhuang Ren & Jing Wang & Peipei Zhang & Shuqing Zhao & Mengyu Li & Meng Yuan & Xiumei Yu & Zaifeng Li & Shisheng Chen & Xiaodong Wang, 2023. "Genetics of Resistance to Leaf Rust in Wheat: An Overview in a Genome-Wide Level," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
- Davinder Sharma & Raz Avni & Juan Gutierrez-Gonzalez & Rakesh Kumar & Hanan Sela & Manas Ranjan Prusty & Arava Shatil-Cohen & István Molnár & Kateřina Holušová & Mahmoud Said & Jaroslav Doležel & Eita, 2024. "A single NLR gene confers resistance to leaf and stripe rust in wheat," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Guifang Lin & Hui Chen & Bin Tian & Sunish K. Sehgal & Lovepreet Singh & Jingzhong Xie & Nidhi Rawat & Philomin Juliana & Narinder Singh & Sandesh Shrestha & Duane L. Wilson & Hannah Shult & Hyeonju L, 2022. "Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Hongna Li & Lei Hua & Shuqing Zhao & Ming Hao & Rui Song & Shuyong Pang & Yanna Liu & Hong Chen & Wenjun Zhang & Tao Shen & Jin-Ying Gou & Hailiang Mao & Guiping Wang & Xiaohua Hao & Jian Li & Baoxing, 2023. "Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Hongna Li & Lei Hua & Shuqing Zhao & Ming Hao & Rui Song & Shuyong Pang & Yanna Liu & Hong Chen & Wenjun Zhang & Tao Shen & Jin-Ying Gou & Hailiang Mao & Guiping Wang & Xiaohua Hao & Jian Li & Baoxing, 2023. "Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Yajun Wang & Xiaodong Wang & Lu Zhang & Kymbat Zhakupova & Francisco Ayala & Yi Ouyang & Jing Lu & Naveenkumar Athiyannan & Brande B. H. Wulff & Simon G. Krattinger, 2025. "An optimized disease resistance gene cloning workflow for wheat," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
- Huagang He & Zhaozhao Chen & Renchun Fan & Jie Zhang & Shanying Zhu & Jiale Wang & Qianyuan Zhang & Anli Gao & Shuangjun Gong & Lu Zhang & Yanan Li & Yitong Zhao & Simon G. Krattinger & Qian-Hua Shen , 2024. "A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Gengshen Chen & Bao Zhang & Junqiang Ding & Hongze Wang & Ce Deng & Jiali Wang & Qianhui Yang & Qianyu Pi & Ruyang Zhang & Haoyu Zhai & Junfei Dong & Junshi Huang & Jiabao Hou & Junhua Wu & Jiamin Que, 2022. "Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Miaomiao Li & Huaizhi Zhang & Huixin Xiao & Keyu Zhu & Wenqi Shi & Dong Zhang & Yong Wang & Lijun Yang & Qiuhong Wu & Jingzhong Xie & Yongxing Chen & Dan Qiu & Guanghao Guo & Ping Lu & Beibei Li & Lei, 2024. "A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Yue Zhao & Zhenjie Dong & Jingnan Miao & Qianwen Liu & Chao Ma & Xiubin Tian & Jinqiu He & Huihui Bi & Wen Yao & Tao Li & Harsimardeep S. Gill & Zhibin Zhang & Aizhong Cao & Bao Liu & Huanhuan Li & Su, 2024. "Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Huaizhi Zhang & Miaomiao Li & Gaojie Wang & Keyu Zhu & Guanghao Guo & Hongkui Fu & Chenchen Hu & Zhiying Chu & Jinghuang Hu & Qiuhong Wu & Yongxing Chen & Dan Qiu & Jingzhong Xie & Delin Li & Beibei L, 2025. "Paired NLRs originated from Triticum dicoccoides coordinately confer resistance to powdery mildew in wheat," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
- Chao Ma & Xiubin Tian & Zhenjie Dong & Huanhuan Li & Xuexue Chen & Wenxuan Liu & Guihong Yin & Shuyang Ma & Liwei Zhang & Aizhong Cao & Cheng Liu & Hongfei Yan & Sunish K. Sehgal & Zhibin Zhang & Bao , 2024. "An Aegilops longissima NLR protein with integrated CC-BED module mediates resistance to wheat powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Guotai Yu & Oadi Matny & Nicolas Champouret & Burkhard Steuernagel & Matthew J. Moscou & Inmaculada Hernández-Pinzón & Phon Green & Sadiye Hayta & Mark Smedley & Wendy Harwood & Ngonidzashe Kangara & , 2022. "Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Zuhuan Yang & Nannan Liu & Xiaoming Xie & Wenxin Wei & Yuhan Bai & Junna Sun & Wei Pan & Jiatian Yang & Weidong Wang & Xiaodong Xie & Muhammad Saqlain & Houyang Kang & Baoyun Li & Zhaorong Hu & Jinyin, 2025. "Two complementary NLRs from wild emmer wheat confer powdery mildew resistance," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64428-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64428-5.html