IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30434-0.html
   My bibliography  Save this article

Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light

Author

Listed:
  • Lei Luo

    (Northwest University)

  • Lei Fu

    (Northwest University)

  • Huifen Liu

    (Northwest University)

  • Youxun Xu

    (University College London)

  • Jialiang Xing

    (Northwest University)

  • Chun-Ran Chang

    (Xi’an Jiaotong University)

  • Dong-Yuan Yang

    (Xi’an Jiaotong University
    Shaanxi Yanchang Petroleum (Group) Corp. Ltd.)

  • Junwang Tang

    (University College London)

Abstract

Methane (CH4) oxidation to high value chemicals under mild conditions through photocatalysis is a sustainable and appealing pathway, nevertheless confronting the critical issues regarding both conversion and selectivity. Herein, under visible irradiation (420 nm), the synergy of palladium (Pd) atom cocatalyst and oxygen vacancies (OVs) on In2O3 nanorods enables superior photocatalytic CH4 activation by O2. The optimized catalyst reaches ca. 100 μmol h−1 of C1 oxygenates, with a selectivity of primary products (CH3OH and CH3OOH) up to 82.5%. Mechanism investigation elucidates that such superior photocatalysis is induced by the dedicated function of Pd single atoms and oxygen vacancies on boosting hole and electron transfer, respectively. O2 is proven to be the only oxygen source for CH3OH production, while H2O acts as the promoter for efficient CH4 activation through ·OH production and facilitates product desorption as indicated by DFT modeling. This work thus provides new understandings on simultaneous regulation of both activity and selectivity by the synergy of single atom cocatalysts and oxygen vacancies.

Suggested Citation

  • Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30434-0
    DOI: 10.1038/s41467-022-30434-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30434-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30434-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingying Fan & Wencai Zhou & Xueying Qiu & Hongdong Li & Yuheng Jiang & Zhonghui Sun & Dongxue Han & Li Niu & Zhiyong Tang, 2021. "Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate," Nature Sustainability, Nature, vol. 4(6), pages 509-515, June.
    2. Yiou Wang & Xu Liu & Xiaoyu Han & Robert Godin & Jialu Chen & Wuzong Zhou & Chaoran Jiang & Jamie F. Thompson & K. Bayazit Mustafa & Stephen A. Shevlin & James R. Durrant & Zhengxiao Guo & Junwang Tan, 2020. "Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Yuanyi Zhou & Ling Zhang & Wenzhong Wang, 2019. "Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Christian M. Wolff & Peter D. Frischmann & Marcus Schulze & Bernhard J. Bohn & Robin Wein & Panajotis Livadas & Michael T. Carlson & Frank Jäckel & Jochen Feldmann & Frank Würthner & Jacek K. Stolarcz, 2018. "All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods," Nature Energy, Nature, vol. 3(10), pages 862-869, October.
    5. Zakaria, Z. & Kamarudin, S.K., 2016. "Direct conversion technologies of methane to methanol: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 250-261.
    6. Landong Li & Junqing Yan & Tuo Wang & Zhi-Jian Zhao & Jian Zhang & Jinlong Gong & Naijia Guan, 2015. "Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    7. Lili Lin & Wu Zhou & Rui Gao & Siyu Yao & Xiao Zhang & Wenqian Xu & Shijian Zheng & Zheng Jiang & Qiaolin Yu & Yong-Wang Li & Chuan Shi & Xiao-Dong Wen & Ding Ma, 2017. "Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts," Nature, Nature, vol. 544(7648), pages 80-83, April.
    8. Xiang Yu & Vladimir L. Zholobenko & Simona Moldovan & Di Hu & Dan Wu & Vitaly V. Ordomsky & Andrei Y. Khodakov, 2020. "Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature," Nature Energy, Nature, vol. 5(7), pages 511-519, July.
    9. Jinshu Tian & Jiangqiao Tan & Zhaoxia Zhang & Peijie Han & Min Yin & Shaolong Wan & Jingdong Lin & Shuai Wang & Yong Wang, 2020. "Direct conversion of methane to formaldehyde and CO on B2O3 catalysts," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    10. Joel Y. Y. Loh & Abhinav Mohan & Andrew G. Flood & Geoffery A. Ozin & Nazir P. Kherani, 2021. "Waveguide photoreactor enhances solar fuels photon utilization towards maximal optoelectronic – photocatalytic synergy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jun Ma & Can Zhu & Keke Mao & Wenbin Jiang & Jingxiang Low & Delong Duan & Huanxin Ju & Dong Liu & Kun Wang & Yijing Zang & Shuangming Chen & Hui Zhang & Zeming Qi & Ran Long & Zhi Liu & Li Song & Yuj, 2023. "Sustainable methane utilization technology via photocatalytic halogenation with alkali halides," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    4. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Xiao Sun & Xuanye Chen & Cong Fu & Qingbo Yu & Xu-Sheng Zheng & Fei Fang & Yuanxu Liu & Junfa Zhu & Wenhua Zhang & Weixin Huang, 2022. "Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    7. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    9. Li Zhai & Sara T. Gebre & Bo Chen & Dan Xu & Junze Chen & Zijian Li & Yawei Liu & Hua Yang & Chongyi Ling & Yiyao Ge & Wei Zhai & Changsheng Chen & Lu Ma & Qinghua Zhang & Xuefei Li & Yujie Yan & Xiny, 2023. "Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    11. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Anton Igorevich Serov & Yuriy Alekseevich Kurskii & Dmitry Yurievich Titov & Evgenia Ruslanovna Bodrikova, 2022. "Liquid-Phase Non-Thermal Plasma Discharge for Fuel Oil Processing," Energies, MDPI, vol. 15(9), pages 1-9, May.
    12. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    13. Xiyi Li & Chao Li & Youxun Xu & Qiong Liu & Mounib Bahri & Liquan Zhang & Nigel D. Browning & Alexander J. Cowan & Junwang Tang, 2023. "Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts," Nature Energy, Nature, vol. 8(9), pages 1013-1022, September.
    14. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    15. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    16. Luis Fernando Morelos Medina & Rufino Nava & María de los Ángeles Cuán Hernández & Omar Said Yáñez Soria & Bárbara Pawelec & Rufino M. Navarro & Carlos Elías Ornelas Gutiérrez, 2020. "Structural, Optical and Photocatalytic Characterization of Zn x Cd 1−x S Solid Solutions Synthetized Using a Simple Ultrasonic Radiation Method," Energies, MDPI, vol. 13(21), pages 1-20, October.
    17. Rongkui Su & Hongguo Zhang & Feng Chen & Zhenxing Wang & Lei Huang, 2022. "Applications of Single Atom Catalysts for Environmental Management," IJERPH, MDPI, vol. 19(18), pages 1-6, September.
    18. Wenqing Zhang & Cenfeng Fu & Jingxiang Low & Delong Duan & Jun Ma & Wenbin Jiang & Yihong Chen & Hengjie Liu & Zeming Qi & Ran Long & Yingfang Yao & Xiaobao Li & Hui Zhang & Zhi Liu & Jinlong Yang & Z, 2022. "High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Zhankai Liu & Ziyi Liu & Jie Fan & Wen-Duo Lu & Fan Wu & Bin Gao & Jian Sheng & Bin Qiu & Dongqi Wang & An-Hui Lu, 2023. "Auto-accelerated dehydrogenation of alkane assisted by in-situ formed olefins over boron nitride under aerobic conditions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Choon, S.L. & Lim, H.N. & Ibrahim, I. & Zainal, Z. & Tan, K.B. & Foo, C.Y. & Ng, C.H., 2023. "New potential materials in advancement of photovoltaic and optoelectronic applications: Metal halide perovskite nanorods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30434-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.