IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30251-5.html
   My bibliography  Save this article

CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide

Author

Listed:
  • Lei Fan

    (Rice University
    College of Chemical and Biological Engineering, Zhejiang University)

  • Xiaowan Bai

    (The University of Texas at Austin)

  • Chuan Xia

    (Rice University
    Rice University)

  • Xiao Zhang

    (Rice University)

  • Xunhua Zhao

    (The University of Texas at Austin)

  • Yang Xia

    (Rice University)

  • Zhen-Yu Wu

    (Rice University)

  • Yingying Lu

    (College of Chemical and Biological Engineering, Zhejiang University)

  • Yuanyue Liu

    (The University of Texas at Austin)

  • Haotian Wang

    (Rice University
    Rice University
    Rice University)

Abstract

Electrochemical water oxidation reaction (WOR) to hydrogen peroxide (H2O2) via a 2e− pathway provides a sustainable H2O2 synthetic route, but is challenged by the traditional 4e− counterpart of oxygen evolution. Here we report a CO2/carbonate mediation approach to steering the WOR pathway from 4e− to 2e−. Using fluorine-doped tin oxide electrode in carbonate solutions, we achieved high H2O2 selectivity of up to 87%, and delivered unprecedented H2O2 partial currents of up to 1.3 A cm−2, which represents orders of magnitude improvement compared to literature. Molecular dynamics simulations, coupled with electron paramagnetic resonance and isotope labeling experiments, suggested that carbonate mediates the WOR pathway to H2O2 through the formation of carbonate radical and percarbonate intermediates. The high selectivity, industrial-relevant activity, and good durability open up practical opportunities for delocalized H2O2 production.

Suggested Citation

  • Lei Fan & Xiaowan Bai & Chuan Xia & Xiao Zhang & Xunhua Zhao & Yang Xia & Zhen-Yu Wu & Yingying Lu & Yuanyue Liu & Haotian Wang, 2022. "CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30251-5
    DOI: 10.1038/s41467-022-30251-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30251-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30251-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinjian Shi & Samira Siahrostami & Guo-Ling Li & Yirui Zhang & Pongkarn Chakthranont & Felix Studt & Thomas F. Jaramillo & Xiaolin Zheng & Jens K. Nørskov, 2017. "Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    2. Artavazd Badalyan & Shannon S. Stahl, 2016. "Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators," Nature, Nature, vol. 535(7612), pages 406-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peike Cao & Xie Quan & Xiaowa Nie & Kun Zhao & Yanming Liu & Shuo Chen & Hongtao Yu & Jingguang G. Chen, 2023. "Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jihyun Baek & Qiu Jin & Nathan Scott Johnson & Yue Jiang & Rui Ning & Apurva Mehta & Samira Siahrostami & Xiaolin Zheng, 2022. "Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Changmin Kim & Sung O Park & Sang Kyu Kwak & Zhenhai Xia & Guntae Kim & Liming Dai, 2023. "Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Ke Liu & Mengna Lei & Xin Li & Xuemei Zhang & Ying Zhang & Weigang Fan & Man-Bo Li & Sheng Zhang, 2024. "Paired electrocatalysis unlocks cross-dehydrogenative coupling of C(sp3)-H bonds using a pentacoordinated cobalt-salen catalyst," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Lejing Li & Zhuofeng Hu & Yongqiang Kang & Shiyu Cao & Liangpang Xu & Luo Yu & Lizhi Zhang & Jimmy C. Yu, 2023. "Electrochemical generation of hydrogen peroxide from a zinc gallium oxide anode with dual active sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Min Liu & Tian Feng & Yanwei Wang & Guangsheng Kou & Qiuyan Wang & Qian Wang & Youai Qiu, 2023. "Metal-free electrochemical dihydroxylation of unactivated alkenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Zhujun Zhang & Takashi Tsuchimochi & Toshiaki Ina & Yoshitaka Kumabe & Shunsuke Muto & Koji Ohara & Hiroki Yamada & Seiichiro L. Ten-no & Takashi Tachikawa, 2022. "Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Chencheng Qin & Xiaodong Wu & Lin Tang & Xiaohong Chen & Miao Li & Yi Mou & Bo Su & Sibo Wang & Chengyang Feng & Jiawei Liu & Xingzhong Yuan & Yanli Zhao & Hou Wang, 2023. "Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Tian Liu & Zhenhua Pan & Junie Jhon M. Vequizo & Kosaku Kato & Binbin Wu & Akira Yamakata & Kenji Katayama & Baoliang Chen & Chiheng Chu & Kazunari Domen, 2022. "Overall photosynthesis of H2O2 by an inorganic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Ke Xie & Adnan Ozden & Rui Kai Miao & Yuhang Li & David Sinton & Edward H. Sargent, 2022. "Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30251-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.