IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27715-5.html
   My bibliography  Save this article

Connecting reservoir computing with statistical forecasting and deep neural networks

Author

Listed:
  • Lina Jaurigue

    (Institut für Theoretische Physik)

  • Kathy Lüdge

    (Institut für Physik)

Abstract

Standfirst Among the existing machine learning frameworks, reservoir computing demonstrates fast and low-cost training, and its suitability for implementation in various physical systems. This Comment reports on how aspects of reservoir computing can be applied to classical forecasting methods to accelerate the learning process, and highlights a new approach that makes the hardware implementation of traditional machine learning algorithms practicable in electronic and photonic systems.

Suggested Citation

  • Lina Jaurigue & Kathy Lüdge, 2022. "Connecting reservoir computing with statistical forecasting and deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27715-5
    DOI: 10.1038/s41467-021-27715-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27715-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27715-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florian Stelzer & André Röhm & Raul Vicente & Ingo Fischer & Serhiy Yanchuk, 2021. "Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Daniel J. Gauthier & Erik Bollt & Aaron Griffith & Wendson A. S. Barbosa, 2021. "Next generation reservoir computing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Meng Zhai & Mohammadamin Moradi & Ling-Wei Kong & Bryan Glaz & Mulugeta Haile & Ying-Cheng Lai, 2023. "Model-free tracking control of complex dynamical trajectories with machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    6. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    7. Yang, J. & Primo, E. & Aleja, D. & Criado, R. & Boccaletti, S. & Alfaro-Bittner, K., 2022. "Implementing and morphing Boolean gates with adaptive synchronization: The case of spiking neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Hu, Wancheng & Zhang, Yibin & Ma, Rencai & Dai, Qionglin & Yang, Junzhong, 2022. "Synchronization between two linearly coupled reservoir computers," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Graciela Schiliuk & Iader Giraldo, 2021. "Regional responses to the Covid-19 crisis: a comparative study from economic, policy, and institutional perspectives," Documentos de Discusión FLAR 19734, Fondo Latino Americano de Reservas - FLAR.
    11. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Minati, Ludovico & Bartels, Jim & Li, Chao & Frasca, Mattia & Ito, Hiroyuki, 2022. "Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Semenov, Vladimir V. & Bukh, Andrei V. & Semenova, Nadezhda, 2023. "Delay-induced self-oscillation excitation in the Fitzhugh–Nagumo model: Regular and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Lukas Körber & Christopher Heins & Tobias Hula & Joo-Von Kim & Sonia Thlang & Helmut Schultheiss & Jürgen Fassbender & Katrin Schultheiss, 2023. "Pattern recognition in reciprocal space with a magnon-scattering reservoir," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Berry, Christopher & Douglas Hoffman, K., 2023. "Communicating intent: Effects of employer-controlled tipping strategy disclosures on tip amount and firm evaluations," Journal of Business Research, Elsevier, vol. 160(C).
    17. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Chicchi, Lorenzo & Fanelli, Duccio & Giambagli, Lorenzo & Buffoni, Lorenzo & Carletti, Timoteo, 2023. "Recurrent Spectral Network (RSN): Shaping a discrete map to reach automated classification," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    20. Minati, Ludovico & Li, Chao & Bartels, Jim & Chakraborty, Parthojit & Li, Zixuan & Yoshimura, Natsue & Frasca, Mattia & Ito, Hiroyuki, 2023. "Accelerometer time series augmentation through externally driving a non-linear dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27715-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.