IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26221-y.html
   My bibliography  Save this article

Addressing MRSA infection and antibacterial resistance with peptoid polymers

Author

Listed:
  • Jiayang Xie

    (East China University of Science and Technology)

  • Min Zhou

    (East China University of Science and Technology)

  • Yuxin Qian

    (East China University of Science and Technology)

  • Zihao Cong

    (East China University of Science and Technology)

  • Sheng Chen

    (East China University of Science and Technology)

  • Wenjing Zhang

    (East China University of Science and Technology)

  • Weinan Jiang

    (East China University of Science and Technology)

  • Chengzhi Dai

    (East China University of Science and Technology)

  • Ning Shao

    (East China University of Science and Technology)

  • Zhemin Ji

    (East China University of Science and Technology)

  • Jingcheng Zou

    (East China University of Science and Technology)

  • Ximian Xiao

    (East China University of Science and Technology)

  • Longqiang Liu

    (East China University of Science and Technology)

  • Minzhang Chen

    (East China University of Science and Technology)

  • Jin Li

    (Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine)

  • Runhui Liu

    (East China University of Science and Technology
    East China University of Science and Technology)

Abstract

Methicillin-Resistant Staphylococcus aureus (MRSA) induced infection calls for antibacterial agents that are not prone to antimicrobial resistance. We prepare protease-resistant peptoid polymers with variable C-terminal functional groups using a ring-opening polymerization of N-substituted N-carboxyanhydrides (NNCA), which can provide peptoid polymers easily from the one-pot synthesis. We study the optimal polymer that displays effective activity against MRSA planktonic and persister cells, effective eradication of highly antibiotic-resistant MRSA biofilms, and potent anti-infectious performance in vivo using the wound infection model, the mouse keratitis model, and the mouse peritonitis model. Peptoid polymers show insusceptibility to antimicrobial resistance, which is a prominent merit of these antimicrobial agents. The low cost, convenient synthesis and structure diversity of peptoid polymers, the superior antimicrobial performance and therapeutic potential in treating MRSA infection altogether imply great potential of peptoid polymers as promising antibacterial agents in treating MRSA infection and alleviating antibiotic resistance.

Suggested Citation

  • Jiayang Xie & Min Zhou & Yuxin Qian & Zihao Cong & Sheng Chen & Wenjing Zhang & Weinan Jiang & Chengzhi Dai & Ning Shao & Zhemin Ji & Jingcheng Zou & Ximian Xiao & Longqiang Liu & Minzhang Chen & Jin , 2021. "Addressing MRSA infection and antibacterial resistance with peptoid polymers," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26221-y
    DOI: 10.1038/s41467-021-26221-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26221-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26221-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yueming Wu & Danfeng Zhang & Pengcheng Ma & Ruiyi Zhou & Lei Hua & Runhui Liu, 2018. "Lithium hexamethyldisilazide initiated superfast ring opening polymerization of alpha-amino acid N-carboxyanhydrides," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Michael Zasloff, 2002. "Antimicrobial peptides of multicellular organisms," Nature, Nature, vol. 415(6870), pages 389-395, January.
    3. Kazuki Fukushima & Shaoqiong Liu & Hong Wu & Amanda C. Engler & Daniel J. Coady & Hareem Maune & Jed Pitera & Alshakim Nelson & Nikken Wiradharma & Shrinivas Venkataraman & Yuan Huang & Weimin Fan & J, 2013. "Supramolecular high-aspect ratio assemblies with strong antifungal activity," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    4. Ernest Y. Lee & Changsheng Zhang & Jeremy Di Domizio & Fan Jin & Will Connell & Mandy Hung & Nicolas Malkoff & Veronica Veksler & Michel Gilliet & Pengyu Ren & Gerard C. L. Wong, 2019. "Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Cheng & Guihai Gan & Shaoqiu Zheng & Guoying Zhang & Chen Zhu & Shiyong Liu & Jinming Hu, 2023. "Biofilm heterogeneity-adaptive photoredox catalysis enables red light-triggered nitric oxide release for combating drug-resistant infections," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    2. Giuseppe Maccari & Mariagrazia Di Luca & Riccardo Nifosí & Francesco Cardarelli & Giovanni Signore & Claudia Boccardi & Angelo Bifone, 2013. "Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    3. Eduardo F Vicente & Luis Guilherme M Basso & Graziely F Cespedes & Esteban N Lorenzón & Mariana S Castro & Maria José S Mendes-Giannini & Antonio José Costa-Filho & Eduardo M Cilli, 2013. "Dynamics and Conformational Studies of TOAC Spin Labeled Analogues of Ctx(Ile21)-Ha Peptide from Hypsiboas albopunctatus," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-12, April.
    4. Matthijs P. Hoelscher & Joachim Forner & Silvia Calderone & Carolin Krämer & Zachary Taylor & F. Vanessa Loiacono & Shreya Agrawal & Daniel Karcher & Fabio Moratti & Xenia Kroop & Ralph Bock, 2022. "Expression strategies for the efficient synthesis of antimicrobial peptides in plastids," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Guilherme D Brand & Mariana T Q Magalhães & Maria L P Tinoco & Francisco J L Aragão & Jacques Nicoli & Sharon M Kelly & Alan Cooper & Carlos Bloch Jr, 2012. "Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-14, September.
    6. Li Liu & Ying Fang & Qingsheng Huang & Jianhua Wu, 2011. "A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    7. K. Danowski & D. Sorg & J. Gross & H.H.D. Meyer & H. Kliem, 2012. "Innate defense capability of challenged primary bovine mammary epithelial cells after an induced negative energy balance in vivo," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 57(5), pages 207-219.
    8. Larrañaga, Patricia & Díaz-Dellavalle, Paola & Cabrera, Andrea & Alem, Diego & Leoni, Carolina & Almeida-Souza, André Luis & Giovanni-De-Simone, Salvatore & Dalla-Rizza, Marco, 2012. "Activity of Naturally Derived Antimicrobial Peptides against Filamentous Fungi Relevant for Agriculture," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 1(2).
    9. Wenping Zhu & Ying Li & Shaoxun Guo & Wu-Jie Guo & Tuokai Peng & Hui Li & Bin Liu & Hui-Qing Peng & Ben Zhong Tang, 2022. "Stereoisomeric engineering of aggregation-induced emission photosensitizers towards fungal killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Abdullah Kaviani Rad & Angelika Astaykina & Rostislav Streletskii & Yeganeh Afsharyzad & Hassan Etesami & Mehdi Zarei & Siva K. Balasundram, 2022. "An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils," IJERPH, MDPI, vol. 19(8), pages 1-27, April.
    11. Carlos Polanco González & Marco Aurelio Nuño Maganda & Miguel Arias-Estrada & Gabriel del Rio, 2011. "An FPGA Implementation to Detect Selective Cationic Antibacterial Peptides," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    12. Ying Liu & Zhongwu Ren & Nannan Zhang & Xiaoxin Yang & Qihua Wu & Zehong Cheng & Hang Xing & Yugang Bai, 2023. "A nanoscale MOF-based heterogeneous catalytic system for the polymerization of N-carboxyanhydrides enables direct routes toward both polypeptides and related hybrid materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26221-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.