IDEAS home Printed from https://ideas.repec.org/a/ags/ccsesa/231374.html
   My bibliography  Save this article

Activity of Naturally Derived Antimicrobial Peptides against Filamentous Fungi Relevant for Agriculture

Author

Listed:
  • Larrañaga, Patricia
  • Díaz-Dellavalle, Paola
  • Cabrera, Andrea
  • Alem, Diego
  • Leoni, Carolina
  • Almeida-Souza, André Luis
  • Giovanni-De-Simone, Salvatore
  • Dalla-Rizza, Marco

Abstract

The search for environmentally biocompatible and cost-effective methods to control filamentous fungi in agriculture is becoming increasingly urgent. In vitro antimicrobial activity of three synthetic peptides was investigated against some filamentous fungi with agricultural relevance. The peptides were an analog of Temporin called Temporizina, a fragment from Pleurocidin termed Plc-2, and a peptide identified from sesame seeds named Pses3. Antimicrobial activity of these peptides towards filamentous fungi has not been previously reported. Seven plant pathogenic or mycotoxigenic fungal species, isolated from plant tissues were assayed: Alternaria solani, Colletotrichum gloesporioides, Fulvia fulvum, Fusarium oxisporum, Aspergillus niger, A. ochraceus and Penicillium digitatum. Values of Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined and compared with the commercially available fungicide Captan as a positive control. The peptides showing greatest inhibition were Pses3 and Plc-2 and C. gloesporioides was the most sensitive of the evaluated fungi. The MICvalues for Plc-2 and Pses3 peptides ranged from 0.64 µM to 10.25 µM. These values were much lower than those observed for Captan, suggesting the potential of these peptides as fungicides. In particular, Pses3 is a novel peptide derived from sesame seeds not reported in databases.

Suggested Citation

  • Larrañaga, Patricia & Díaz-Dellavalle, Paola & Cabrera, Andrea & Alem, Diego & Leoni, Carolina & Almeida-Souza, André Luis & Giovanni-De-Simone, Salvatore & Dalla-Rizza, Marco, 2012. "Activity of Naturally Derived Antimicrobial Peptides against Filamentous Fungi Relevant for Agriculture," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 1(2).
  • Handle: RePEc:ags:ccsesa:231374
    DOI: 10.22004/ag.econ.231374
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/231374/files/sar-v1n2-P211_211-221_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.231374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Zasloff, 2002. "Antimicrobial peptides of multicellular organisms," Nature, Nature, vol. 415(6870), pages 389-395, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    2. Li Liu & Ying Fang & Qingsheng Huang & Jianhua Wu, 2011. "A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    3. K. Danowski & D. Sorg & J. Gross & H.H.D. Meyer & H. Kliem, 2012. "Innate defense capability of challenged primary bovine mammary epithelial cells after an induced negative energy balance in vivo," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 57(5), pages 207-219.
    4. Giuseppe Maccari & Mariagrazia Di Luca & Riccardo Nifosí & Francesco Cardarelli & Giovanni Signore & Claudia Boccardi & Angelo Bifone, 2013. "Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    5. Jiayang Xie & Min Zhou & Yuxin Qian & Zihao Cong & Sheng Chen & Wenjing Zhang & Weinan Jiang & Chengzhi Dai & Ning Shao & Zhemin Ji & Jingcheng Zou & Ximian Xiao & Longqiang Liu & Minzhang Chen & Jin , 2021. "Addressing MRSA infection and antibacterial resistance with peptoid polymers," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Eduardo F Vicente & Luis Guilherme M Basso & Graziely F Cespedes & Esteban N Lorenzón & Mariana S Castro & Maria José S Mendes-Giannini & Antonio José Costa-Filho & Eduardo M Cilli, 2013. "Dynamics and Conformational Studies of TOAC Spin Labeled Analogues of Ctx(Ile21)-Ha Peptide from Hypsiboas albopunctatus," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-12, April.
    7. Abdullah Kaviani Rad & Angelika Astaykina & Rostislav Streletskii & Yeganeh Afsharyzad & Hassan Etesami & Mehdi Zarei & Siva K. Balasundram, 2022. "An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils," IJERPH, MDPI, vol. 19(8), pages 1-27, April.
    8. Matthijs P. Hoelscher & Joachim Forner & Silvia Calderone & Carolin Krämer & Zachary Taylor & F. Vanessa Loiacono & Shreya Agrawal & Daniel Karcher & Fabio Moratti & Xenia Kroop & Ralph Bock, 2022. "Expression strategies for the efficient synthesis of antimicrobial peptides in plastids," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Carlos Polanco González & Marco Aurelio Nuño Maganda & Miguel Arias-Estrada & Gabriel del Rio, 2011. "An FPGA Implementation to Detect Selective Cationic Antibacterial Peptides," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    10. Guilherme D Brand & Mariana T Q Magalhães & Maria L P Tinoco & Francisco J L Aragão & Jacques Nicoli & Sharon M Kelly & Alan Cooper & Carlos Bloch Jr, 2012. "Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ccsesa:231374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.ccsenet.org/sar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.