IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17404-0.html
   My bibliography  Save this article

Unexpected complexity of everyday manual behaviors

Author

Listed:
  • Yuke Yan

    (University of Chicago)

  • James M. Goodman

    (University of Chicago)

  • Dalton D. Moore

    (University of Chicago)

  • Sara A. Solla

    (Northwestern University)

  • Sliman J. Bensmaia

    (University of Chicago
    University of Chicago
    University of Chicago)

Abstract

How does the brain control an effector as complex and versatile as the hand? One possibility is that neural control is simplified by limiting the space of hand movements. Indeed, hand kinematics can be largely described within 8 to 10 dimensions. This oft replicated finding has been construed as evidence that hand postures are confined to this subspace. A prediction from this hypothesis is that dimensions outside of this subspace reflect noise. To address this question, we track the hand of human participants as they perform two tasks—grasping and signing in American Sign Language. We apply multiple dimension reduction techniques and replicate the finding that most postural variance falls within a reduced subspace. However, we show that dimensions outside of this subspace are highly structured and task dependent, suggesting they too are under volitional control. We propose that hand control occupies a higher dimensional space than previously considered.

Suggested Citation

  • Yuke Yan & James M. Goodman & Dalton D. Moore & Sara A. Solla & Sliman J. Bensmaia, 2020. "Unexpected complexity of everyday manual behaviors," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17404-0
    DOI: 10.1038/s41467-020-17404-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17404-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17404-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Félix Bigand & Elise Prigent & Bastien Berret & Annelies Braffort, 2021. "Decomposing spontaneous sign language into elementary movements: A principal component analysis-based approach," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-18, October.
    2. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    3. Jeffrey D. Laurence-Chasen & Callum F. Ross & Fritzie I. Arce-McShane & Nicholas G. Hatsopoulos, 2023. "Robust cortical encoding of 3D tongue shape during feeding in macaques," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    2. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Ghislain St-Yves & Emily J. Allen & Yihan Wu & Kendrick Kay & Thomas Naselaris, 2023. "Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
    5. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. W. Jeffrey Johnston & Stefano Fusi, 2023. "Abstract representations emerge naturally in neural networks trained to perform multiple tasks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    8. Mehrabbeik, Mahtab & Shams-Ahmar, Mohammad & Levine, Alexandra T. & Jafari, Sajad & Merrikhi, Yaser, 2022. "Distinctive nonlinear dimensionality of neural spiking activity in extrastriate cortex during spatial working memory; a Higuchi fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Maximilian Hoffmann & Jörg Henninger & Johannes Veith & Lars Richter & Benjamin Judkewitz, 2023. "Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Kristjan Kalm & Dennis Norris, 2021. "Sequence learning recodes cortical representations instead of strengthening initial ones," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-34, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17404-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.