IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v2y2012i6d10.1038_nclimate1414.html
   My bibliography  Save this article

Quantifying future climate change

Author

Listed:
  • Matthew Collins

    (College of Engineering, Mathematics and Physical Sciences, University of Exeter)

  • Richard E. Chandler

    (University College London)

  • Peter M. Cox

    (College of Engineering, Mathematics and Physical Sciences, University of Exeter)

  • John M. Huthnance

    (National Oceanography Centre)

  • Jonathan Rougier

    (University of Bristol)

  • David B. Stephenson

    (College of Engineering, Mathematics and Physical Sciences, University of Exeter)

Abstract

This Perspective describes techniques for quantifying uncertainties in climate projections in terms of a common framework, whereby models are used to explore relationships between past climate and climate change and future projections.

Suggested Citation

  • Matthew Collins & Richard E. Chandler & Peter M. Cox & John M. Huthnance & Jonathan Rougier & David B. Stephenson, 2012. "Quantifying future climate change," Nature Climate Change, Nature, vol. 2(6), pages 403-409, June.
  • Handle: RePEc:nat:natcli:v:2:y:2012:i:6:d:10.1038_nclimate1414
    DOI: 10.1038/nclimate1414
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1414
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun-Su Jo & Yoo-Geun Ham, 2023. "Enhanced joint impact of western hemispheric precursors increases extreme El Niño frequency under greenhouse warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Bruce Hewitson & Katinka Waagsaether & Jan Wohland & Kate Kloppers & Teizeen Kara, 2017. "Climate information websites: an evolving landscape," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(5), September.
    3. Attílio, Luccas Assis & Faria, João Ricardo & Rodrigues, Mauro, 2023. "Does monetary policy impact CO2 emissions? A GVAR analysis," Energy Economics, Elsevier, vol. 119(C).
    4. Thomas R. Mortlock & Jonathan Nott & Ryan Crompton & Valentina Koschatzky, 2023. "A long-term view of tropical cyclone risk in Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 571-588, August.
    5. Luccas Assis Attilio & Joao Ricardo Faria & Mauro Rodrigues, 2022. "Does monetary policy impact CO2 Emissions? A GVAR analysis," Working Papers, Department of Economics 2022_24, University of São Paulo (FEA-USP).
    6. Muhammad Chrisna Satriagasa & Piyapong Tongdeenok & Naruemol Kaewjampa, 2023. "Assessing the Implication of Climate Change to Forecast Future Flood Using SWAT and HEC-RAS Model under CMIP5 Climate Projection in Upper Nan Watershed, Thailand," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    7. Martha Butler & Patrick Reed & Karen Fisher-Vanden & Klaus Keller & Thorsten Wagener, 2014. "Inaction and climate stabilization uncertainties lead to severe economic risks," Climatic Change, Springer, vol. 127(3), pages 463-474, December.
    8. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:2:y:2012:i:6:d:10.1038_nclimate1414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.