IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A Simple Induction Approach and an Efficient Trinomial Lattice for Multi-State Variable Interest Rate Derivatives Models

  • Marat Kramin


  • Timur Kramin
  • Stephen Young
  • Venkat Dharan

This paper presents an alternative approach for interest rate lattice construction in the Ritchken and Sankarasubramanian (1995) framework. The proposed method applies a parsimonious induction technique to represent the distribution of auxiliary state variables and value interest rate derivatives. In contrast to other approaches, this technique requires no numerical interpolations, approximations and iterative procedures for pricing interest rate options using a simple backward induction and, therefore, provides significant computational advantages and flexibility with respect to existing implementations. Also, the proposed trinomial interest rate lattice specification provides for a further reduction in computational costs with additional flexibility. The results of this work can be extended to a class of derivatives pricing models with path dependent state variables and generalized to multi-factor models. Copyright Springer Science + Business Media, Inc. 2005

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Review of Quantitative Finance and Accounting.

Volume (Year): 24 (2005)
Issue (Month): 2 (January)
Pages: 199-226

in new window

Handle: RePEc:kap:rqfnac:v:24:y:2005:i:2:p:199-226
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
  2. Les Clewlow & Chris Strickland, 1998. "Pricing Interest Rate Exotics in Multi-Factor Gaussian Interest Rate Models," Research Paper Series 2, Quantitative Finance Research Centre, University of Technology, Sydney.
  3. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
  4. Li, Anlong & Ritchken, Peter & Sankarasubramanian, L, 1995. " Lattice Models for Pricing American Interest Rate Claims," Journal of Finance, American Finance Association, vol. 50(2), pages 719-37, June.
  5. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
  6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
  7. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
  8. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(03), pages 383-405, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:24:y:2005:i:2:p:199-226. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.