IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i2d10.1007_s10729-022-09622-3.html
   My bibliography  Save this article

Operating room design using agent-based simulation to reduce room obstructions

Author

Listed:
  • Kevin Taaffe

    (Clemson University)

  • Yann B. Ferrand

    (Hull College of Business, Augusta University)

  • Amin Khoshkenar

    (Clemson University)

  • Lawrence Fredendall

    (Clemson University)

  • Dee San

    (Access Telecare)

  • Patrick Rosopa

    (Clemson University)

  • Anjali Joseph

    (Clemson University)

Abstract

This study seeks to improve the safety of clinical care provided in operating rooms (OR) by examining how characteristics of both the physical environment and the procedure affect surgical team movement and contacts. We video recorded staff movements during a set of surgical procedures. Then we divided the OR into multiple zones and analyzed the frequency and duration of movement from origin to destination through zones. This data was abstracted into a generalized, agent-based, discrete event simulation model to study how OR size and OR equipment layout affected surgical staff movement and total number of surgical team contacts during a procedure. A full factorial experiment with seven input factors – OR size, OR shape, operating table orientation, circulating nurse (CN) workstation location, team size, number of doors, and procedure type – was conducted. Results were analyzed using multiple linear regression with surgical team contacts as the dependent variable. The OR size, the CN workstation location, and team size significantly affected surgical team contacts. Also, two- and three-way interactions between staff, procedure type, table orientation, and CN workstation location significantly affected contacts. We discuss implications of these findings for OR managers and for future research about designing future ORs.

Suggested Citation

  • Kevin Taaffe & Yann B. Ferrand & Amin Khoshkenar & Lawrence Fredendall & Dee San & Patrick Rosopa & Anjali Joseph, 2023. "Operating room design using agent-based simulation to reduce room obstructions," Health Care Management Science, Springer, vol. 26(2), pages 261-278, June.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09622-3
    DOI: 10.1007/s10729-022-09622-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09622-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09622-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brailsford, Sally C. & Eldabi, Tillal & Kunc, Martin & Mustafee, Navonil & Osorio, Andres F., 2019. "Hybrid simulation modelling in operational research: A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 278(3), pages 721-737.
    2. Susan Budge & Armann Ingolfsson & Erhan Erkut, 2009. "Technical Note---Approximating Vehicle Dispatch Probabilities for Emergency Service Systems with Location-Specific Service Times and Multiple Units per Location," Operations Research, INFORMS, vol. 57(1), pages 251-255, February.
    3. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    4. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    5. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    2. Yun Zhou & Mahmut Parlar & Vedat Verter & Shannon Fraser, 2021. "Surgical Scheduling with Constrained Patient Waiting Times," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3253-3271, September.
    3. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    4. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    5. Antti Peltokorpi, 2011. "How do strategic decisions and operative practices affect operating room productivity?," Health Care Management Science, Springer, vol. 14(4), pages 370-382, November.
    6. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    7. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    8. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
    9. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    10. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    11. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    12. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    13. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    14. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.
    15. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    16. Paola Cappanera & Filippo Visintin & Carlo Banditori, 2018. "Addressing conflicting stakeholders’ priorities in surgical scheduling by goal programming," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 252-271, June.
    17. Anders Reenberg Andersen & Thomas Jacob Riis Stidsen & Line Blander Reinhardt, 2020. "Simulation-Based Rolling Horizon Scheduling for Operating Theatres," SN Operations Research Forum, Springer, vol. 1(2), pages 1-26, June.
    18. Yanbo Ma & Kaiyue Liu & Zheng Li & Xiang Chen, 2022. "Robust Operating Room Scheduling Model with Violation Probability Consideration under Uncertain Surgery Duration," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    19. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    20. Zhan, Yang & Wang, Zizhuo & Wan, Guohua, 2021. "Home service routing and appointment scheduling with stochastic service times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 98-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09622-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.