IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i5d10.1007_s10614-024-10646-w.html
   My bibliography  Save this article

Panel Stochastic Frontier Analysis with Positive Skewness

Author

Listed:
  • Rachida El Mehdi

    (Mohammed First University)

  • Christian M. Hafner

    (Université Catholique de Louvain)

Abstract

This paper focuses on solving the problem of technical efficiency estimation for panel data when residuals are right-skewed. Indeed, there is an ambiguity in stochastic frontier analysis when the residuals of the ordinary least squares estimates are right-skewed, which might indicate that either there is no inefficiency, or that the model is misspecified. To overcome and avoid this problem, we propose a panel model in which the inefficiency term has an extended-half-normal distribution. Hence, our work is an extension of existing work for the cross-section case to panel data with time varying inefficiencies. We first propose estimators of the inefficiency under the extended-half-normal distribution assuming independence between the noise and the inefficiency term. A simulation study illustrates the good performance of our procedure. An application to drinking water for forty-two Moroccan municipalities in the period 2017 to 2019 favors our extended model. Results reveal that the performance of this public sector is generally medium and therefore the waste was significant.

Suggested Citation

  • Rachida El Mehdi & Christian M. Hafner, 2025. "Panel Stochastic Frontier Analysis with Positive Skewness," Computational Economics, Springer;Society for Computational Economics, vol. 65(5), pages 2743-2760, May.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10646-w
    DOI: 10.1007/s10614-024-10646-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10646-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10646-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Hollingsworth, 2008. "The measurement of efficiency and productivity of health care delivery," Health Economics, John Wiley & Sons, Ltd., vol. 17(10), pages 1107-1128, October.
    2. Rachida El Mehdi & Christian M. Hafner, 2014. "Local Government Efficiency: The Case of Moroccan Municipalities," African Development Review, African Development Bank, vol. 26(1), pages 88-101, March.
    3. Gholamreza Hajargasht, 2015. "Stochastic frontiers with a Rayleigh distribution," Journal of Productivity Analysis, Springer, vol. 44(2), pages 199-208, October.
    4. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    5. Rachida El Mehdi & Christian M. Hafner, 2021. "A Starting Note: Panel Stochastic Frontier Analysis with Dependent Error Terms," International Econometric Review (IER), Econometric Research Association, vol. 13(2), pages 24-40, June.
    6. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    7. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    8. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    9. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    10. Dominique DEPRINS & Léopold SIMAR, 1989. "Estimating Technical Inefficiencies With Correction For Environmental Conditions," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 60(1), pages 81-102, January.
    11. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    2. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    3. William C. Horrace & Ian A. Wright, 2020. "Stationary Points for Parametric Stochastic Frontier Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 516-526, July.
    4. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    5. Pantzios, Christos J. & Rozakis, Stelios & Tzouvelekas, Vangelis, 2006. "Evading Farm Support Reduction via Efficient Input Use: The Case of Greek Cotton Growers," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 555-574, December.
    6. Hafner, Christian & Manner, Hans & Simar, Leopold, 2013. "The “wrong skewnessâ€Ω problem in stochastic frontier models: A new approach," LIDAM Discussion Papers ISBA 2013046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Gian Carlo Scarsi, 1999. "Local Electricity Distribution in Italy: Comparative Efficiency Analysis and Methodological Cross-Checking," Working Papers 1999.16, Fondazione Eni Enrico Mattei.
    8. Emilio Gómez-Déniz & Nancy Dávila-Cárdenes & Alejandro Leiva-Arcas & María J. Martínez-Patiño, 2021. "Measuring Efficiency in the Summer Olympic Games Disciplines: The Case of the Spanish Athletes," Mathematics, MDPI, vol. 9(21), pages 1-15, October.
    9. Meena Badade & T. V. Ramanathan, 2020. "Probabilistic frontier regression model for multinomial ordinal type output data," Journal of Productivity Analysis, Springer, vol. 53(3), pages 339-354, June.
    10. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP092021, School of Economics, University of Queensland, Australia.
    11. Christian M. Hafner & Hans Manner & Léopold Simar, 2018. "The “wrong skewness” problem in stochastic frontier models: A new approach," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 380-400, April.
    12. Reddy, Mahendra, 2002. "Implication of Tenancy Status on Productivity and Efficiency: Evidence from Fiji," Sri Lankan Journal of Agricultural Economics, Sri Lanka Agricultural Economics Association (SAEA), vol. 4, pages 1-20.
    13. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Monash Econometrics and Business Statistics Working Papers 3/10, Monash University, Department of Econometrics and Business Statistics.
    14. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    15. Dong, Xiao-yuan & Putterman, Louis, 1997. "Productivity and Organization in China's Rural Industries: A Stochastic Frontier Analysis," Journal of Comparative Economics, Elsevier, vol. 24(2), pages 181-201, April.
    16. Fei Jin & Lung-fei Lee, 2020. "Asymptotic properties of a spatial autoregressive stochastic frontier model," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-40, December.
    17. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    18. Supawat Rungsuriyawiboon & Chris O'Donnell, 2004. "Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities," CEPA Working Papers Series WP072004, School of Economics, University of Queensland, Australia.
    19. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    20. Alexander D. Stead, 2025. "Maximum likelihood estimation of normal-gamma and normal-Nakagami stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 63(2), pages 183-198, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10646-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.